20/11/2006
For the latest see http://www.ee.technion.ac.il/~adam/GRADUATES/048913
The Linear Quadratic problem is defined as follows:

1. Dynamics: $x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+C_{t} w_{t}$ where u is the control, w is the noise, $x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{m}$. We assume $\left\{w_{t}\right\}$ is i.i.d. and zero mean.
2. Cost: $V(x \pi) \stackrel{\text { def }}{=} \mathbb{E}\left[\sum_{t=0}^{N-1}\left(x_{t}^{T} Q_{t} x_{t}+u_{t}^{T} R_{t} u_{t}\right)+x_{N}^{T} Q_{N} x_{n}\right]$ where $Q_{t} \geq 0$ (non-negative), $R_{t}>0$ (strictly positive definite).
3. The horizon is N, initial state x_{0}.

With n counting "steps from 0 " the DP algorithm gives

$$
\begin{align*}
V_{N}(x) & =x^{T} Q_{N} x \tag{0.1}\\
V_{t}(x) & =\min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\mathbb{E}_{x}^{u} V_{t+1}\left(x_{1}\right)\right] \tag{0.2}\\
& =\min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\mathbb{E}_{x}^{u} V_{t+1}\left(A_{t} x+B_{t} u+C_{t} w_{t}\right)\right] \tag{0.3}
\end{align*}
$$

Theorem 0.1 V_{t} is quadratic in x, i.e. $V_{t}(x)=x^{T} K_{t} x+\alpha_{t}$ for some positive definite K_{t} and positive α_{t}.

Proof. We use (backward) induction. This is trivial for $t=N$ since $V_{N}(x) \stackrel{\text { def }}{=} x^{T} Q_{N} x$. Assume now that $V_{t+1}(x)=x^{T} K_{t+1} x+\alpha_{t+1}$. By the DP equation and the induction hypothesis
we have that $V_{t}(x)$ equals

$$
\begin{aligned}
= & \min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\mathbb{E}_{x}^{u}\left[V_{t+1}\left(A_{t} x+B_{t} u+C_{t} w_{t}\right)\right]\right] \\
= & \min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\mathbb{E}_{x}^{u}\left[\left(A_{t} x+B_{t} u+C_{t} w_{t}\right)^{T} K_{t+1}\left(A_{t} x+B_{t} u+C_{t} w_{t}\right)+\alpha+t+1\right]\right] \\
= & \min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\mathbb{E}_{x}^{u}\left[\left(A_{t} x+B_{t} u\right)^{T} K_{t+1}\left(A_{t} x+B_{t} u\right)\right]\right] \\
& \left.\left.\quad+2\left(C_{t} w_{t}\right)^{T} K_{t+1}\left(A_{t} x+B_{t} u\right)+\left(C_{t} w_{t}\right)^{T} K_{t+1} C_{t} w_{t}+\alpha_{t+1}\right]\right] \\
= & \min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\mathbb{E}_{x}^{u}\left[\left(A_{t} x+B_{t} u\right)^{T} K_{t+1}\left(A_{t} x+B_{t} u\right)\right]+0+\alpha_{t}\right]
\end{aligned}
$$

for some non negative α_{t}, where we obtain the last equation since $\mathbb{E} w_{t}=0$, and since $\left(C_{t} w_{t}\right)^{T} K_{t+1} C_{t} w_{t}$ is positive, and therefor its expectation is non negative. So, we have

$$
\begin{equation*}
V_{t}(x)=\min _{u}\left[x^{T} Q_{t} x+u^{T} R_{t} u+\left(A_{t} x+B_{t} u\right)^{T} K_{t+1}\left(A_{t} x+B_{t} u\right)+\alpha_{t}\right] \tag{0.4}
\end{equation*}
$$

To minimize, differentiate with respect to u and set to 0 : this gives

$$
\begin{equation*}
R_{t} u+B_{t}^{T} K_{t+1}\left(A_{t} x+B_{t} u\right)=0 \tag{0.5}
\end{equation*}
$$

and since R_{t} is by assumption strictly positive definite and $B_{t}^{T} K_{t+1} B_{t}$ is non-negative, their sum $M \stackrel{\text { def }}{=} R_{t}+B_{t}^{T} K_{t+1} B_{t}$ is invertible and we have

$$
\begin{equation*}
u^{*}=-\left(R_{t}+B_{t}^{T} K_{t+1} B_{t}\right)^{-1} B_{t}^{T} K_{t+1} A_{t} x \tag{0.6}
\end{equation*}
$$

as the minimizer. Substituting back into the equation for $V_{t}(x)$ we have

$$
\begin{equation*}
V_{t}(x)=x^{T} K_{t} x+\alpha_{t} \tag{0.7}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{t} \stackrel{\text { def }}{=} Q_{t}+A_{t}^{T}\left[K_{t+1}-K_{t+1} B_{t} M_{t}^{-1} B_{t}^{T} K_{t+1}\right] A_{t} a \tag{0.8}
\end{equation*}
$$

The optimal decision rule at time t is thus

$$
\begin{equation*}
\mu_{t}(x) \stackrel{\text { def }}{=} L_{t} x=-M_{t}^{-1} B_{t}^{T} K_{t+1} A_{t} x \tag{0.9}
\end{equation*}
$$

and where K_{t} can be computed recursively via (0.8)—the discrete-time "Riccati equation".

