Fundamentals of stochastic processes 048868 Home assignment 1: Probability and random variables

- 1. Read the material in the lecture notes on spaces and Hilbert space. Do excercise 10.8.
- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For sets $A, B, A_i \in \mathcal{F}$ prove
 - (a) Monotonicity: if $A \subset B$ then $\mathbb{P}\{A\} \leq \mathbb{P}\{B\}$,
 - (b) Subadditivity: if $A \subset \bigcup_i A_i$ then $\mathbb{P}\{A\} \leq \sum_i \mathbb{P}\{A_i\}$.
 - (c) Notation: if $A_i \subset A_{i+1}$ and $\bigcup_i A_i = A$ then we write $A_i \uparrow A$. If $A_{i+1} \subset A_i$ and $\bigcap_i A_i = A$ then we write $A_i \downarrow A$. Prove
 - i. Continuity from below: if $A_i \uparrow A$ then $\mathbb{P}\{A_i\} \to \mathbb{P}\{A\}$.
 - ii. Continuity from above: if $A_i \downarrow A$ then $\mathbb{P} \{A_i\} \to \mathbb{P} \{A\}$.
- 3. Probability spaces and random variables.
 - (a) Let $\Omega = \{1, 2, 3\}$. Find a σ -field \mathcal{F} such that (Ω, \mathcal{F}) is a measurable space, and a mapping X from Ω to \mathbb{R} which is not a random variable.
 - (b) Let (Ω, \mathcal{F}) be a measurable space and let X_n be a sequence of random variables. Assume that for each $\omega \in \Omega$ the limit $\lim_{n\to\infty} X_n(\omega)$ exists, and denote it by $X(\omega)$. Prove that X is a random variable.
 - (c) Show that if f is Borel measurable (from \mathbb{R} to \mathbb{R}) and X is a random variable then so is Y = f(X).
 - (d) Call a function g lower semi-continuous (l.s.c.) if $\liminf_{y\to x} g(y) \ge g(x)$ for all x (that is, there can only be jumps down). Call a function g upper semi-continuous (u.s.c.) if (-g) is l.s.c.
 - i. Show that g is l.s.c. iff $\{x : g(x) \le a\}$ is closed for all a.
 - ii. Conclude that l.s.c. functions are Borel measurable.
 - iii. Conclude that continuous functions are Borel measurable.
 - (e) Let h be an arbitrary real valued function on \mathbb{R} . Show that the set $\Delta \doteq \{x : h \text{ is discontinuous at } x\}$ is Borel measureable, as follows:
 - i. Let $h^{\delta} \doteq \sup\{h(y) : |y-x| < \delta\}$ and $h_{\delta} \doteq \inf\{h(y) : |y-x| < \delta\}$. Show that h^{δ} is l.s.c. and h_{δ} is u.s.c.
 - ii. Let $h^0 = \lim_{\delta \downarrow 0} h^{\delta}$ and $h_0 = \lim_{\delta \downarrow 0} h_{\delta}$. Show that $\Delta = \{x : h^0(x) \neq h_0(x)\}$.
 - iii. Conclude that Δ is Borel measurable.