Fundamentals of stochastic processes 048868

Home assignment 1—Probability and random variables, solution to Exercise 3.(b).

- 3. Probability spaces and random variables.
 - (b) Let (Ω, \mathcal{F}) be a measurable space and let X_n be a sequence of random variables. Assume that for each $\omega \in \Omega$ the limit $\lim_{n\to\infty} X_n(\omega)$ exists, and denote it by $X(\omega)$. Prove that Xis a random variable.

Solution: we need to show that for all α ,

$$\{\omega: X(\omega) \le \alpha\}$$

is a measurable set. Since complements of measurable sets are measurable, we may instead show that

$$\{\omega: X(\omega) > \alpha\}$$

is a measurable set. But since

$$X(\omega) = \lim_{n \to \infty} X_n(\omega) \,,$$

we have for each ω

$$\{\omega: X(\omega) > \alpha\} = \{\omega: X_n(\omega) > \alpha\}$$
 for all $n \ge m(\omega)$.

That is, since X_n converges, $X > \alpha$ if and only if $X_n > \alpha$ for all large enough n. Let us formalize this. Note that

$$\bigcap_{n=m}^{\infty} \left\{ \omega : X_n(\omega) > \alpha \right\}$$

is exactly the set of ω such that $X_n(\omega)$ is larger than α for all $n \geq m$. Therefore

$$\bigcup_{m=1}^{\infty} \cap_{n=m}^{\infty} \{ \omega : X_n(\omega) > \alpha \}$$

is exactly the set of ω such that $X_n(\omega)$ is larger than α for all n larger than some $m(\omega)$. So, finally,

$$\{\omega: X(\omega) > \alpha\} = \bigcup_{m=1}^{\infty} \cap_{n=m}^{\infty} \{\omega: X_n(\omega) > \alpha\}.$$

Since each of the sets on the right hand side is measurable (as X_n are measurable), so are their countable intersections and unions.