
Lecture notes

Control of Stochastic Processes

Adam Shwartz, Electrical Engineering, Technion, Israel

Version of 2006

For the latest see

http://www.ee.technion.ac.il/˜adam/GRADUATES/048913

c© 2006 Adam Shwartz. Permisstion granted to use for

personal learning and research.

Abstract

These are lecture notes for the course: written in LaTeX2ε since

I need much mathematics, and in English since Hebrew is still more

difficult to write mathematics in (yet).

1 Introduction

This took place in class no. 1, using notes I posted on the WEB (word-7).

1

2 Markov chains

and Controlled Markov chains

2.1 Markov chains

Definition 2.1 A discrete time stochastic process {x0, x1, . . .} is called a

Markov chain if, for all n, all sets A and points b0, b1, . . .,

P{xn+1 ∈ A | xi = bi, i ≤ n} = P{xn+1 ∈ A | xn = bn} . (2.1)

The state of the Markov chain at time n is the value of xn. The state space

S of the chain is the space of all possible states.

Fine points: for non countable state spaces, need to define the conditional

probability in the right way.

We shall deal with discrete state spaces, e.g. integers. In this case we shall

denote

pij
def
= P{xn+1 = j | xn = i} . (2.2)

Definition 2.2 If the rhs of (2.2) does not depend on n, we call the Markov

chain homogeneous, and the notation of (2.2) is valid. We denote P
def
= {pij}

and call it the transition matrix. We define the row-vector

µn(j)
def
= P{xn = j} . (2.3)

2

Obviosly, µn depends on the distribution of x0.

Homogeneous MC are sometimes called stationary: a poor terminology.

Example 2.3 The sequence of coin tosses (get +1 for heads, −1 for tails)

is a Markov chain. Write the distribution of x1 as a function of x0, and as

a function of µ0. What is the structure of the transition matrix?

Theorem 2.4 Given an initial state x and a transition matrix P , there ex-

ists a probability measure Px and a Markov proceses x0, x1, . . . so that

Px{x0 = x} = 1, (2.4)

Px{xn = y} = µn(y), (2.5)

µn+1 = µnP. (2.6)

Exercise 2.5 Let ξ0, ξ1, . . . be a sequence of i.i.d. random variables. Con-

sider the general recursion

xn+1 = f (xn, ξn) , x0 = x. (2.7)

Show that x0, x1, . . . is a Markov process. Under what conditions is the state

space equal N? In this case write an expression for pij.

Exercise 2.6 This complements the previous exercise. Let y0, y1, . . . be a

homogeneous Markov process with state space N and transition probabilities

pij. Let ξ0, ξ1, . . . be a sequence of Uniform [0,1], i.i.d. random variables.

Show that it is possible to construct a function f so that the Markov chain

3

given by

xn+1 = f (xn, ξn) , x0 = y0, (2.8)

has the same distribution as the process y.

2.2 Controlled Markov chains

The latest text on the subject is [10].

A controlled Markov chain differs from a Markov chain by the inclusion of

a “control” or “action” variable a. This variable may change the transition

probabilities. We restrict for the moment to the homogeneous case. The

process is now defined (recursively as before) through the following.

Definition 2.7 A Controlled Markov chain is a process where, given an = a,

we have

pij(a)
def
= P{xn+1 = j | xn = i, an = a} (2.9)

= P{xn+1 ∈ A | xn = i, an = a, xk = bk, ak = αk, k < n} . (2.10)

Example 2.8 Suppose I have two coins in my pocket: a normal (fair) coin,

and a coin that gives probability 3/4 to heads. I throw the fair coin. If I get

tails, I throw the same coin 2 more times. If I get heads, I throw the biased

coin two more times. Is the sequence of coin tosees (get +1 for heads, −1

for tails) a Markov chain? Is it a controlled chain?

The available actions are defined through an action space. There may be

additional restrictions on available actions, depending on the state x. In

4

choosing an action a at time n (while in state x), what information do we

have? and what information are we allowed to use? Obviously, we should

not use information about the future (which we usually do not have). But

it is reasonable to use the information we do have, namely everything that

happened since we started the process, at time 0.

Definition 2.9 The available actions are defined through the action space

A. Actions available when at state x are from the action space A(x). The

history of the process at time n is the sequence

hn
def
= {x0, a0, x1, a1, . . . , xn−1, an−1, xn}. (2.11)

A decision rule is an assignment of an action to each history. A policy is a

collection of decision rules, one for each time n.

For example, a function g(x) with values in A(x) defines a decision rule. A

policy π that, at each n, uses a decision rule which depends on the history

through xn only (but may depend explicitly on n!) is called a Markov policy.

If the same decision rule is used for each n, than it is a Stationary policy.

A randomized policy defines a probability for using each action, rather than

specifying a single action. Thus, in general,

π = {π0, π1, . . . } (2.12)

where

πn = πn(a|hn) (2.13)

is the probability to use action a at time n, when the observed history is hn.

5

Denote by Π the collection of all admissible policies. It can be shown that

given an initial state x0 = x and a policy π, there exists a Probability P
π
x

and of a controlled stochastic process that correspond to x, π.

So, our process behaves as follows. At time n we have observed the history

hn. Based on our chosen policy, we have a probability πn = πn(a|hn) that

our choice of action will be a. If indeed the action turns our to be a, then

the next state will be j with probability pxnj(a).

Exercise 2.10 Show that a Markov policy makes the process into a (possibly

non homogeneous) Markov process, and a Stationary policy makes the process

into an homogeneous Markov process.

Definition 2.11 Extending the notation pij, pij(a) we define for a deter-

ministic (non randomized) decision rule g

pij(g)
def
= Px(xn+1 = j|xn = i, g(xn)) = pxnj(g(xn)). (2.14)

For a randomized decision rule g the notation pij(g) means

pij(g)
def
= Px(xn+1 = j|xn = i, g(xn)) =

∑

a∈A(xn)

pxnj(a)g(a|xn). (2.15)

Exercise 2.12 Suppose pij(g; n) depends explicitly on time. Embed this

chain in a new homogeneous Controlled chain. Give the new state and action

spaces as well as transitions explicitely.

Exercise 2.13 Extend exercises 2.5–2.6 to the controlled case, where

xn+1 = f (xn, an, ξn) . (2.16)

6

Suppose we fix an initial state x and a policy π. We then have a probability

P
π
x and expectation (operator) E

π
x.

Example 2.14 Let µ be a row vector and think of a function f as a column

vector (its easy if f is defined for a finite number of arguments). Give an

interpretation of the following objects and write them in terms of P
a
x, E

a
x and

x0: P (a), µP (a), µf , P (a)f , µP (a)f . Suppose we choose a feedback control,

so that when in state x, we choose action g(x). What is the form of the

transition matrix? Suppose we use g0 at time 0 and g1 at time 1, so that

π = {g0, g1}. Express E
π
x f(x2) in terms of transition matrices.

The theorem below is stated and proved for the case where S and A are

both finite (just a bit more care would extend to the countable case). It is,

however, far more general. See [8, Theorem 13.2].

Theorem 2.15 Let π be any admissible policy and fix an initial state x.

Define a randomized Markov (non stationary!) policy g through its decision

rules

gn(i; a)
def
=

P
π
x (xn = i, an = a)

P
π
x (xn = i)

. (2.17)

Define the policy g = {g0, g1, . . . }. Then

P
π
x (xn = i, an = a) = P

g
x (xn = i, an = a) for all n, i, a. (2.18)

7

Proof. By induction. For n = 0, we only need to check for i = x, and then

P
π
x (x0 = x, a0 = a) =

P
π
x (x0 = x, a0 = a)

P
π
x (x0 = x)

(2.19)

def
= g0(x; a) (2.20)

= P
g
x (a0 = a) (2.21)

=
P

g
x (x0 = x, a0 = a)

P
g
x (x0 = x)

(2.22)

= P
g
x (x0 = x, a0 = a) . (2.23)

Now suppose the theorem is true up to n. Then

P
g
x (xn+1 = j) =

∑

i

P
g
x (xn+1 = j, xn = i) (2.24)

=
∑

i

P
g
x (xn+1 = j | xn = i) P

g
x (xn = i) (2.25)

=
∑

i

∑

a

pij(a)gn(i; a) P
g
x (xn = i) (2.26)

=
∑

i

∑

a

pij(a)
P

π
x (xn = i, an = a)

P
π
x (xn = i)

P
g
x (xn = i) (2.27)

=
∑

i

∑

a

pij(a) P
π
x (xn = i, an = a) (2.28)

= P
π
x (xn+1 = j) . (2.29)

The rest is by definition of g and of a controlled Markov process.

8

3 Markov decision processes

To complete the picture we need a way to distinguish between good perfor-

mance and bad performance of our system. The way this is done is, as usual,

chosen for two reasons. First, it is quite general and flexible. Second, it facili-

tates analysis, leads to methods for computing performance and synthesizing

good policies, and to various algorithms. We shall comment on other types

of performace measures later on.

The starting point is a function which penalizes (or specifies a cost for)

an action, depending on which action is taken, and at which state. This

is called the immediate cost function, and we denote it by c(x, a). From

this we define a value V (x; π) for each policy, via the immediate cost. The

standard Markov decision problem is to maximize (or minimize) some V :

different problems may differ in the structure of V . The standard structures

of V are defined and investigated in subsequent chapters. They are all the

expectation of a weighed sum of immediate cost functions, that is, for some

sequence αn, n ≥ 0 they have the form

V (x; π) = E
π
x

∞
∑

n=0

αnc(xn, an) (3.1)

or a similar expression (with the usual stipulation that the expression is well

defined!). The less standard Markov decision problems are, for example,

constrained (through several cost functionals), multicriteria etc.

To make things concrete, let us describe a few criteria. If αn = 0 for all

n > n0 then we are interested only in a finite number of steps, and the

problem and criterion are called “finite horizon.”

9

If αn = βn for some β < 1 then this is the discounted cost problem. It has a

ready economic interpretation, but more generally it emphasizes short-term

costs, and discounts long term effects.

The third, standard type of criterion is mathematically more challanging: it

is the “average cost,” defined roughly as

Vav(x; π)
def
= lim

T→∞

1

T
E

π
x

T
∑

n=0

c(xn, an). (3.2)

This is not a precise definition, for technical reasons, and we shall return to

the definition in later chapters. Note, however, that this criterion completely

ignores short term costs, and values only the remote future.

Definition 3.1 We denote the immediate cost function by c(x, a), the value

of a policy π starting at x by V (x; π). When we wish to specify the type of

criterion we shall use Vf to denote finite cost, Vβ to denote discounted cost,

and Vav to denote average cost.

Definition 3.2 The formal standard definition of MDP. A Markov decision

process is a 5-tuple {S,A, P, c, V } where

• S is the state space,

• A is the action space,

• P (a) = {pij(a)} is the transition matrix, when action a is taken,

• c = c(x, a) is the immediate cost when at state x using action a, and

10

• V = V (x; π) is the value of the criterion when starting at x and using

policy π.

Let V i(x; π), i = 1, 2, . . . , K be some cost functions. The two main problems

we shall consider below are

Optimization:

Maximize V 1(x; π) (3.3)

Constrained Optimization:

Maximize V 1(x; π) (3.4)

Subject to V i(x; π) ≥ vi, i = 2, . . . , K. (3.5)

and we shall denote the value of the problem by V 1(x): that is, this is the

maximal value obtained in (3.3), or the maximal value obtained in (3.4)

under the constraints (3.5). Note that, in general, this value may depend on

the initial state x—see Example 3.9. A policy π∗ satisfying the constraints

in (3.5) is called feasible at x. A (feasible) policy π∗ satisfying V 1(x; π) ≥

V 1(x)− ε is called ε-optimal at x. If it is ε-optimal for all x, it will be called

ε-optimal. A 0-optimal policy is called optimal.

More complicated models allow for the available actions to depend on the

state as A(x). Slight complications arise when we wish to include events in

our model, since often there are events (or pairs of events) that lead to no

change in the state. Allowing explicit time dependence is conceptually trivial

although could be practically annoying.

Exercise 3.3 Consider a MDP where transitions and costs depend explicitly

on time. Transform this problem into a standard, homogeneous model. Hint:

11

define a new state which is the pair (x, n), where x is the original state and

n is time. Start the new problem at (x, 0). Now write the elements of this

new MDP.

Corollary 3.4 If V is a weighted sum of immediate cost functions, then

Markov policies suffice.

This follows immediately from Theorem 2.15.

Note that, in the most abstract form, we can view our variable as a policy

(the argument of V) or, more abstractly, as a probability measure in the

space of measures which can be generated by policies.

We now turn to modelling.

Exercise 3.5 Consider a buffer where, at each unit of time, one of the fol-

lowing happens: a new request for service arrives w.p. pr, and if the buffer is

not empty, a service is completed w.p. ps where pr + ps < 1. Is there a state

such that the processes is a Markov chain? Now suppose the available action

is to accept an arrival or not. Give the parameters of the CMC. Write an

immediate cost function that gives a fixed reward for accepting a request, and

a fixed penalty for each request in the buffer for each unit of time.

Exercise 3.6 Repeat Exercise 3.5 in the case that, if an arrival occurs, it

carries requests according to an integer valued random variable (with finite

number of values): this is called batch arrivals. Now allow the control action

to accept any subset of the arrival batch. Now allow batch departures.

12

Exercise 3.7 Let dn; n ≥ 0 be a sequence of iid, positive, integer valued

random variables representing a demand process. Suppose the available action

is to order any (positive) number into stock; but the order arrives at the next

time unit. Write the CMC in the case that unfulfilled demand is lost, and in

the case that it is “backlogged.” Write an immediate cost which is negative

and affine in the order size, gives a fixed reward for each fulfilled unit of

demand, and a penalty for a parially completed request.

Exercise 3.8 Let f be an arbitrary function and let consider a CMC xn.

Fix λ > 0 and suppose we want to maximize

P
π
x

(

max
0≤n≤N

f(xn ≥ λ

)

. (3.6)

Write this in a standard form. Hint: define a variable yn which keeps the

last largest value of f(xn).

Example 3.9 Let S = {0, 1} with a single action a. Let p10(a) = p00(a) = 1.

Let c(1, a) = 1 and c(0, a) = 0. Consider the ocnstrained optimization

problem where the immediate cost associated with the constraint satisfies

c2(1, a) = 1, c2(0, a) = 0. Then for v2 = α0/2 the optimization problem

is not even feasible starting at state 1.

13

4 The finite horizon MDP.

The finite-horizon problem is defined by setting

Vfh(x; π) = E
π
x

([

N−1
∑

n=0

c(xn, an)

]

+ c0(xN)

)

. (4.1)

Definition 4.1 The finite horizon MDP is to Maximize Vfh(x; π) over all

policies π.

Example 4.2 Cheapest path on a graph. Consider a graph with points which

we denote by iα. Here i denotes the distance to our destination: the “end”

of the graph, and α takes the values U (up) or D (down). At each step we

can choose the action U (up), in which case our immediate cost is c(iα, U)

and we move to (i−1)U with probability pαu, and to i−1, D with probability

1 − pαu. If on the other hand we choose action D (down), our immediate

cost is c(iα, D) and we move to (i− 1)U with probability pαd, and to i− 1, D

with probability 1 − pαd.

Example 4.3 ([11, I.2]) . This is a gambling example: at any stage you

can bet any amount up to your present holding. If you win, with probability

p, then you double your bet. Otherwise you lose it. You are allowed n plays.

The objective is to maximize the (expectation of the) logarithm of your final

holdings.

The natural state here is your current holding, which is a real nonnegative

number. The action can be taken to be the fraction of your holdings that

you bet: so, it is a number between 0 and 1. This is more general than our

14

formal model, but we shall apply the same tools (although we do not prove

them valid!).

Corollary 4.4 For the finite horizon MDP (optimization and constrained

optimization), Markov policies suffice.

Once we have restricted to Markov policies, we can establish the principle of

optimality.

Definition 4.5 For a policy π we use the notation

π = {πk
0 , π

N
k+1} where πk

0 = {π0, . . . , πk} and πN
k+1 = {πk+1, . . . , πN} .

(4.2)

We also recall that

Px(·) = P(· | x0 = x) (4.3)

so that, due to assumed homogeneity we can write

P (xN = y | xk = x) = Px (xN−k = y) . (4.4)

Note that the two sides have a different meaning, but the values agree.

Theorem 4.6 Let π be an optimal Markov policy for a finite horizon MDP.

Then, for each k < N , the policy πN
k+1 is optimal for the finite horizon MDP

with objective

Vfh;k(x; π) = E
π
x

([

N−k−2
∑

n=0

c(xn, an)

]

+ c0(xN−k−1)

)

(4.5)

15

for each x such that P
πk

0
x (xk+1 = x) > 0. Conversly, suppose πN

k+1 is optimal

for the N − k − 1-step finite horizon MDP with the above objective, for all

initial states x. Then given any optimal policy σ, the policy {σk
0 , π

N
k+1} is

optimal.

Note: we use the convention that
∑−1

i=0 ai = 0. Note also that in order to

calculate the distribution of xk+1, we only need to know x and πk
0 .

Proof. By contradiction. Let σ be an optimal Markov policy for Vfh;k.

Consider the policy

π̃ = {πk
0 , σ} (4.6)

and note that this is a Markov policy. Write

Vfh(x; π) = E
π
x

[

k
∑

n=0

c(xn, an) + E
π
x

([

N−1
∑

n=k+1

c(xn, an)

]

+ c0(xN)

∣

∣

∣

∣

∣

xk+1

)]

.

(4.7)

Since by assumption σ is optimal and πN
k+1 is not, we have for all x, (in

obvious notation)

(

E
σ
x −E

πN

k+1

x

)

([

N−k−2
∑

n=0

c(xn, an)

]

+ c0(xN−k−1)

)

> 0 (4.8)

where we have shifted the indices as in definition 4.5. But this is exactly the

second term in our evaluation of Vfh above. Therefore, π̃ performs strictly

better than π, a contradiction. The proof of the converse is left as an exercise.

16

Definition 4.7 The optimality equation for the finite horizon problem is

Vn(x) = max
a

(c(x, a) + E
a
x Vn−1(x1)) ; V0(x) = c0(x) . (4.9)

Theorem 4.8 Consider a finite MDP with finite horizon. Then there exists

an optimal policy which is Markov and deterministic. The value function

can be computed by backward induction using the optimality equation, any

Markov policy which satisfies the optimality equation is optimal, and any

optimal Markov policy satisfies the equation.

Proof. Note that the index n in the optimality equation counts steps to

go, and not running time index.

By the principle of optimality, we should do the last step in an optimal way;

this is the case n = 1. This shows that we can choose a Markov decision rule

at time N − 1, so that the action depends only on the state x at that time,

and is not randomized. Moreover, this decision rule is optimal for all x. Now

apply the principle of optimality twice: the optimal policy must do the last

two steps in an optimal way, and our just-computed last step can be used

as the last part of the two-step problem. Thus, again from the optimality

equation, the last two steps use a non-randomized Markov policy. Continue

N − 1 times.

Note that there may be more than one optimal policy, or more specifically, at

any given time and state, more than one action may be optimal. According to

the theorem, all possible combinations of actions than satisfy the optimality

equation will result in optimal policy. This includes combinations created by

17

randomization. Randomization may not be necessary, but it can be used.

Going back to example 4.2, let us use the optimality equation in order to

compute the optimal policy and cost. The final cost is, by definition, 0.

With one step to go we obtain

V1(1U) = max
a

{c(1U, U) + puuV0(0U) + (1 − puu)V0(0D), (4.10)

c(1U, D) + pudV0(0U) + (1 − pud)V0(0D)} (4.11)

= max
a

{c(1U, U), c(1U, D)} (4.12)

V1(1D) = max
a

{c(1D, U) + pduV0(0U) + (1 − pdu)V0(0D), (4.13)

c(1D, D) + pddV0(0U) + (1 − pdd)V0(0D)} (4.14)

= max
a

{c(1D, U), c(1D, D)} . (4.15)

This equation gives both the value, as well as the optimal policy. The action

to take is the one achieving the maximum, and we obtain an action which

depends on the state.

The next step is identical, except that the probabilistic terms do not disap-

pear, since the “remaining steps” are no longer of zero cost:

V2(2U) = max
a

{c(2U, U) + puuV1(1U) + (1 − puu)V1(1D), (4.16)

c(2U, D) + pudV1(1U) + (1 − pud)V1(1D)} (4.17)

V2(2D) = max
a

{c(2D, U) + pduV1(1U) + (1 − pdu)V1(1D), (4.18)

c(2D, D) + pddV1(1U) + (1 − pdd)V1(1D)} . (4.19)

Note that the resulting policy is Markov, deterministic, and time dependent.

We need to convert from “steps to go” to the real time index. The complexity

18

of this computation is linear in the number of stages: at each step we have

8 multiplications, 12 additions and two max operations, each between two

numbers.

Finally, note that making the transition probabilities state-dependent, adding

the possibility of staying where we are, or moving from iU to iD etc. would

not complicate things in principle—only the notation will become more com-

plex.

Example 4.3 can be solved exactly, using the backward induction algorithm.

The condition at the last step is, by definition

V0(x) = log x . (4.20)

The optimality equation reads

Vn(x) = max
0≤α≤1

[pVn−1(x + αx) + (1 − p)Vn−1(x − αx)] . (4.21)

Assume p > 0.5. For the first step we obtain

V1(x) = max
0≤α≤1

[p log(x + αx) + (1 − p) log(x − αx)] (4.22)

= max
0≤α≤1

[p log(1 + α) + (1 − p) log(1 − α) + log x] . (4.23)

The maximum is attained at α = 2p − 1 > 0, and so

V1(x) = C + log x , C = log 2 + p log p + (1 − p) log(1 − p). (4.24)

But then, the optimality equation with n = 2 yields

V2(x) = max
0≤α≤1

[p log(x + αx) + (1 − p) log(x − αx) + C] (4.25)

= 2C + log x . (4.26)

19

Repeating the calculation we conclude that

Vn(x) = nC + log x . (4.27)

Moreover, the optimal action is to be, at each stage, a fraction 2p − 1.

Example 4.9 One of the most famous problems in optimization (and in

computer science) is the travelling salesman problem. In this problem a trav-

elling salesman is required to travel between N given cities. There is a cost

for each possible leg of the trip, and all legs are possible, that is, for any two

cities, it is possible to obtain a flight between these two. The objective is to

visit each city, without returning to any city more than once, and all that at

minimal cost. So, our fist mission is to model this problem as a finite MDP

A more complicated version of this problem allows for random routing: choos-

ing to go from city a to b may, with some probability, bring us actually to

city c.

20

5 Linear Programming,

Occupation measures

A linear program is an optimization problem of the following type.

Definition 5.1 A Linear Program in the variables z is specified through a

vector of weights c, a matrix A specifying inequality constraints, and a matrix

C specifying equality constraints:

Maximize c · z (5.1)

Subject to A · z + b ≥ 0 (5.2)

and C · z + d = 0. (5.3)

This is a very general structure, but there are efficient methods to solve such

problems (polynomial-although it seems that the non-polynomial method

works better . . .). Many MDP’s can be solved through LP methods. Note

in particular that the finite-horizon cost is linear in the space of measures,

21

since the cost can be written as

Vfh(x; π) (5.4)

= E
π
x

([

N−1
∑

n=0

c(xn, an)

]

+ c0(xN)

)

(5.5)

=

N−1
∑

n=0

E
π
x c(xn, an) + E

π
x c0(xN) (5.6)

=

(

N−1
∑

n=0

∑

y,a

P
π
x (xn = y, an = a) c(y, a)

)

+
∑

y,a

P
π
x (xN = y, aN = a) c0(y, a)

(5.7)

=
∑

y,a

(

N−1
∑

n=0

P
π
x (xn = y, an = a) c(y, a) + P

π
x (xN = y, aN = a) c0(y, a)

)

(5.8)

which is linear in P
π
x. However, we need to choose our variables so that the

constraints are linear, and so that we can recover π from the variables.

Example 5.2 Write the optimality equation as a linear program. Hint: the

variable is the distribution of the actions. This gives the optimal cost (and

policy) through a sequence of linear programs. Now write all of them using a

single problem (hint: the programs are related through constraints). What is

the size of this program?

There is a more natural way to write a linear program for the N -step problem,

which is related to LP’s for other criteria. To define the LP, it is convenient

to introduce “occupation measures.”

22

Definition 5.3 The occupation measure Qfh for the finite horizon process

is defined by

Qfh(x0, π; n, x, a) = P
π
x0

(xn = x, an = a). (5.9)

Note that, for each n, Qfh is a probability measure. We can write a linear

program, extending example 5.2, as follows.

Definition 5.4 Linear program for a finite MDP (in the variables z =

z(n, x, a)).

Maximize
∑

y,a∈A(y)

N−1
∑

n=0

c(y, a)z(n, y, a) + c0(y)z(N, y, a) (5.10)

Subject to
∑

a∈A(y)

z(0, y, a) = 1{y=x} (5.11)

and
∑

a∈A(y)

z(n, y, a) −
∑

u∈S

∑

a∈A(u)

puy(a)z(n − 1, u, a) = 0 (5.12)

and z(n, y, a) ≥ 0. (5.13)

The interpretation of the variables is that z(n, y, a) = Qfh(π, x; n, y, a).

Therefore, if π is a Markov policy,

z(n, y, a)
∑

a z(n, y, a)
(5.14)

is exactly the decision rule at time n, since by definition,

P
π
x(xn = y, an = a) = P

π
x(xn = y) · πn(a | y). (5.15)

Note that the decision rule is a non-linear function of the variables of the

LP! The maximization is exactly of the cost. The first constraint is that the

23

initial condition is x. The second is that the occupation measure is consistent

with the transition probabilities and with the chosen actions, and the last is

obvious.

Exercise 5.5 Discuss the computational complexity of solving the finite hori-

zon MDP via the two algorithms: the optimality equation (backward induc-

tion), and linear programming.

Exercise 5.6 Write a linear programming algorithm for the constrained op-

timization, finite horizon problem.

24

6 Super Modularity and optimization

It is often impossible or impractical to solve an MDP via any of the com-

putational methods we have seen. This is certainly the case if the state (or

action) spaces are infinite. However, it may still be possible to obtain struc-

tural results. These are important for two reasons. First, they provide some

information about the control, and in this way help design “good” controls.

But more importantly, often the structural results show that we need only

search within a fairly small class of candidates for optimality, thus making

the computation feasible.

One type of structural results relies on “supermodularity.” We illustrate via

an example. The two key points to keep in mind are: first, the use of super-

modularity. Second, the way the result is obtained, namely by identifying a

set of properties that are satisfied by the final cost, and propagate through

the backward induction.

Example 6.1 [11, I.4]

25

7 Discounted Cost

Definition 7.1 The discounted cost with discount factor β, under policy π

with initial state x is

Vβ(x; π) = E
π
x

[

∞
∑

n=0

βnc(xn, an)

]

. (7.1)

Note that this is well defined under any of the following conditions:

• c is bounded below,

• c is bounded above,

• for some α < 1 and C,

E
π
x |c(xn, an)| ≤ C ·

(

α

β

)n

.

Under the first two conditions, the cost may be inifinite, but it is well de-

fined. Under the last condition, the cost is finite, and the sum converges

exponentially fast. However, this condition depends on both initial state and

policy! The last condition may seem impossible to verify: this is not so.

Example 7.2 Suppose the state space is the positive integers, and that the

transitions up are bounded, that is, for some K

P(xn+1 ≥ i + k|xn = i, an) = 0 for all k ≥ K.

In this case xn ≤ x + n ·K, and so if c grows at most polynomially fast with

x, uniformly in a, that is if

sup
a

|c(x, a)| ≤ C · xd for some C and d,

26

then the bound holds, with any β < α < 1.

This can be extended in an obvious way to more general state spaces—for ex-

ample the N dimensional lattice. In fact, this is exactly the situation in most

models of queues and communications networks, where the state space is the

length of various queues, and where typically the number of new jobs/arrivals

at any one slot is bounded.

The discounted cost is used when the future is less important than the past—

a rather common condition. This particular form is chosen, in this case, for

ease of computation. In addition, the discounted cost has an appealing time-

homogeneity: shifting time by one unit amounts to multiplying all costs by

a single factor—β. This property also gives the discounted cost its economic

interpretation. For suppose I am promised an income stream of the form cn.

To calculate the present value of this future stream, we perform the following

mental procedure. We take a loan so that the payments we need to make are

exactly the stream cn. But if we can return c1 after one period of time and

the interest rate is α, then we can get a loan (now) of l1 so that

l1(1 + α) = c1

and if we are to return cn after n periods of time, we can obtain for this a

loan (now) of ln so that

ln(1 + α)n = cn

and the total loan is then given by

∞
∑

n=0

ln =
∞
∑

n=0

cn

(1 + α)n
=

∞
∑

n=0

βncn

27

where β = 1/(1 + α).

The discounted cost also appears naturally as a model of learning in the

context of manufacturing. It is an observed fact, for example, that prices

of mass-storage devices decrease exponentially (hard-discs, for example), in

terms of the cost per unit of storage. The same can be said for the price of

a unit of computation speed. Although (for physical reasons) it is obvious

that such changes cannot persist forever, if the horizon is long enough it is

convenient to use the discounted cost model.

Finally, as we shall see later, the discounted cost is relatively easy to handle

from a mathematical and a computational point of view. It is therefore used

as an approximation to other, more challanging cost structures (such as the

average cost).

Definition 7.3 The Discounted MDP is to Maximize Vβ(x; π) over all poli-

cies π.

Corollary 7.4 For the Discounted MDP (both Optimization and Constrained

Optimization), Markov policies suffice.

Once we have restricted to Markov policies, we can establish the principle of

optimality. We use the notation of Section 4 and Definition 4.5.

Theorem 7.5 Let π be an optimal Markov policy for a Discounted MDP.

Then, for each k > 0, the policy π∞
k+1 is optimal for the discounted MDP

with objective Vβ(x; π) for each x such that P
πk

0
x (xk+1 = x) > 0.

28

Proof. Left as an exercise.

We now turn to a more abstract approach to the discounted MDP.

Definition 7.6 The one-step operator Ld : S → S corresponding to a deci-

sion rule d, and the optimality operator T : S → S are defined as follows:

(Ldf) (x) = c(x, d(x)) + β E
d
x f(x1) (7.2)

(Tf) (x) = max
a

(c(x, a) + β E
a
x f(x1)) . (7.3)

The optimality equation for the Discounted problem is TV = V , that is

V (x) = max
a

(c(x, a) + β E
a
x V (x1)) . (7.4)

Note that under the boundedness assumption |c(x, a)| ≤ C we have |V (x; π)| ≤

C/(1 − β), so that the objective function is bounded, uniformly in x and in

π.

Definition 7.7 A metric d(x, y) is a real valued function that satisfies

1. Positivity: d(x, y) ≥ 0

2. Symmetry: d(x, y) = d(y, x)

3. d(x, y) = 0 iff x = y

4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

A Metric space is a space (collection of points) with a metric. A Metric space

is complete if every Cauchy sequence converges. That is, if

lim
n,m→∞

d(xn, xm) → 0 implies that limn→∞ d(xn, x0) = 0 for some x0.

29

The real line is a metric space, with d(x, y) = |x− y|. But it is also a metric

space with the metric d(x, y) = ∞ for all x 6= y. The set of integers is a

metric space with either of the metrics above.

Definition 7.8 A function f on a metric space is a contraction if there

exists a constant Kf < 1 so that d(f(x), f(y)) ≤ Kfd(x, y).

Thus, a contraction moves points closer.

Example 7.9 The following real functions are easily seen to be contractions:

f(x) = x/2 + b (any b), f(x) = (x + sin x)/3.

In N dimensions, fix some rotation matrix Θ and any matrix A. Then the

function (with vectors as arguments and as values!) f(x) = 1
2
Θ · x + A is a

contraction. Moreover, we could add any nonlinear term, provided it reduces

the size by at least 3.

Definition 7.10 A point x is a fixed point of a function f if f(x) = x.

Lemma 7.11 If f is a contraction mapping on a complete metric space then

f has a unique fixed point x0. Moreover, for any x, the iteration f (n)(x)

converges to x0 geometrically fast. That is, if we define

f (1) = f, f (n+1)(x) = f (n)(f(x))

then for each x there is a constant Cx so that

d(f (n)(x), x0) ≤ CxK
n
f .

30

Lemma 7.12 If the cost is bounded then T and, for each d, Ld are contrac-

tion operators under the sup norm. Therefore there exists a unique bounded

solution to each of the equations (7.2) and (7.3).

Proof. Fix d, and let f and g be bounded functions. Then

sup
x

|(Ldf) (x) − (Ldg) (x)| = β sup
x

∣

∣

∣
E

d(x)
x [f(x1) − g(x1)]

∣

∣

∣
(7.5)

≤ β sup
x

E
d(x)
x |f(x1) − g(x1)| (7.6)

≤ β sup
x

|f(x) − g(x)| . (7.7)

Therefore Ld is a contraction with constant β < 1. As for T ,

sup
x

|(Tf) (x) − (Tg) (x)| = sup
x

∣

∣

∣

∣

sup
a

(Laf) (x) − sup
a

(Lag) (x)

∣

∣

∣

∣

(7.8)

≤ sup
x

sup
a

|(Laf) (x) − (Lag) (x)| (7.9)

= sup
a

[

sup
x

|(Laf) (x) − (Lag) (x)|

]

(7.10)

≤ sup
a

[

β sup
x

|f(x) − g(x)|

]

(7.11)

= β sup
x

|f(x) − g(x)| (7.12)

where the last inequality follows from the proof for Ld. Thus T is also a

contraction with constant β. The rest follows from properties of contraction

operators.

Lemma 7.13 Consider a Discounted MDP with bounded costs. Let π =

{d, d, . . .} be a stationary policy. Then the discounted cost V (x; π) is the

31

unique bounded solution of LdW = W , that is, of

W (x) = c(x, d(x)) + β E
d(x)
x W (x1). (7.13)

Proof. By Lemma 7.12 there exists a unique bounded solution. Iterat-

ing (7.13), we obtain

W (x) = c(x, d(x)) + β E
d(x)
x W (x1) (7.14)

= E
π
x

(

c(x0, a0) + βc(x1, a1) + β2W (x2)
)

(7.15)

= E
π
x

(

N
∑

n=0

βnc(xn, an)

)

+ E
π
x βN+1W (xN+1) . (7.16)

But the first term in the last line converges to the cost under π, and the

second is bounded by CβN

1−β
, which converges to zero as N → ∞.

Theorem 7.14 Consider a Discounted MDP with bounded costs. There ex-

ists an optimal policy which is Markov stationary and deterministic. The

value function is the unique bounded solution of the optimality equation, and

any Markov policy which satisfies the optimality equation is optimal.

Proof. Note that since by assumption |c(x, a)| ≤ C we have |V (x; π)| ≤ C/

(1 − β), so that the objective function is bounded. We first show that any

bounded solution of the optimality equation provides the optimal cost and

an optimal decision rule. Let V (x) be a solution of the optimality equation

and let d(x) be a (deterministic) decision rule so that

V (x) =
(

c(x, d(x)) + E
d
x(x)V (x1)

)

.

32

(The maximizer exists if A is finite, and otherwise under appropriate conti-

nuity conditions which we ignore here). Now fix N and consider the finite

horizon problem with cost βn · c and terminal cost c0(x) = βN · V (x). Using

the optimality equation that V satisfies we see that V (x) solves the N -step

finite horizon optimality equation, so that πN = {d, d, . . . , d} is an optimal

policy. Note however that, for any policy σ,

V (x; σ) ≤ E
σ
x

N
∑

n=0

βnc(xn, an) +
CβN

1 − β
(7.17)

≤ E
πN

x

N
∑

n=0

βnc(xn, an) + E
πN

x βNV (xN) +

(

E
πN

x

∣

∣βNV (xN)
∣

∣ +
CβN

1 − β

)

(7.18)

≤ E
π∞

x

∞
∑

n=0

βnc(xn, an) + βNC1 (7.19)

where, in the first inequality, we used the fact that the costs are bounded, in

the second we used the optimality of πN for the finite horizon problem, and

we added a positive term. In the last inequality we collected all terms using

a new constant C1. The first term in the last line is, by the previous lemma,

exactly the cost of the policy π∞ = {d, d, . . .}. This shows that there exists

an optimal, Markov, deterministic policy. The rest is left as an exercise.

We now turn to methods for comparing and computing costs, values and op-

timal policies. Most of the methods are developed for the optimization prob-

lem: however, the Linear Programming methods work for the Constrained

Optimization problem as well. We start with the computation of the cost.

Note that if the state space is finite, we can consider the function V (·; π)

as a column vector, which we denote by V (π). Similarly we denote by Cd

33

the column vector with entries c(x, d(x)), and by E
π f(x1) the column vector

with entries E
π
x f(x1). In the geberal case (state space is not finite), for each

d we may consider Cd to be a function of x defined by Cd(x) = c(x, d(x)).

Define a version of Ld with zero cost by

(L0df)(x)
def
= β E

d
x f(x1). (7.20)

Note that this is Ld in the case when c(x, a) = 0 for all x, a. Therefor L0d is

a contraction operator and moreover, it is a linear operator.

Corollary 7.15 If costs are bounded then the discounted cost of a stationary

policy π = {d, d, . . .} is the solution of the system of linear equations

V (π) = [I − L0d]
−1 Cd . (7.21)

Proof. Note first that

[I − L0d]
−1 =

∞
∑

k=0

Lk
0d (7.22)

as is easy to verify (at least formally) by multiplying the right hand side

by I − L0d (both from the left and from the right). The right hand side is

well defined, in the sense that we can apply it to any bounded function, and

obtain a bounded function: indeed, applying it to Cd we obtain exactly the

discounted cost under d∞.

If the state space is finite, (7.21) is a set of linear equations, with the dimen-

sion of the state space.

34

In the finite case, the operator L0d can be written as a matrix, so that the

equation can be stated in explicit terms: it depends on the transitions and

the costs, and is linear in both.

The two most common algorithms for computing the optimal cost and policy

are Policy Iteration and Value Iteration. We begin with a comparison result.

Denote by d∞ the policy which uses the decision rule d at each stage, that

is, d∞ = {d, d, . . .}.

Lemma 7.16 Assume the costs are bounded and let di be deterministic de-

cision rules. If

Ld2
V (x; d∞

1) ≥ V (x; d∞
1)

for all x, then V (x; d∞
2) ≥ V (x; d∞

1) for all x.

Proof. By assumption (and watch out for the notation, especially in line

2),

V (x; d∞
1) ≤ c(x, d2(x)) + β E

d2

x V (x1; d
∞
1) (7.23)

≤ c(x, d2(x)) + β E
d2

x

[

c(x1, d2(x1) + β E
d2

x1
V (x1; d

∞
1)
]

(7.24)

= E
d∞2
x

[

c(x, d2(x)) + βc(x1, d2(x1)) + β2V (x2, d
∞
1)
]

(7.25)

≤ E
d∞2
x

[

N−1
∑

n=0

βnc(xn, d2(xn)) + βNV (xN , d∞
1)

]

(7.26)

= V (x, d∞
2) +

2CβN

1 − β
(7.27)

and the result is established.

35

Theorem 7.17 (Policy iteration) Consider a discounted optimization prob-

lem with bounded costs and finite action and state spaces. Fix an arbitrary

stationary, deterministic policy π0 = d∞
0 . Define

dn+1(x) = arg max
a

{c(x, a) + β E
a
x V (x1, d

∞
n } .

Then V (x, d∞
n) ↑ V (x). In addition, we have convergence in a finite number

of steps, and moreover, we can choose dn so that dn(x) → d(x). Any such d

defines an optimal policy π∗ = d∞.

Note that there may be more than one “argmax:” although it does not matter

which one we choose, we need to fix our choice if we wish for converngence.

Proof. By Lemma 7.16 and the definition of dn, the sequence V (x, dn)

is increasing for each x. Since the costs are bounded, this sequence is

bounded above. Therefore, it must converge, say to some W (x). Hence

using Lemma 7.16 again,

W (x) = lim
n→∞

V (x, d∞
n) (7.28)

= lim
n→∞

[

c(x, dn) + β E
dn

x V (x1, d
∞
n)
]

(7.29)

≤ lim
n→∞

max
a

[c(x, a) + β E
a
x V (x1, d

∞
n)] (7.30)

= lim
n→∞

[

c(x, dn+1) + β E
dn+1

x V (x1, d
∞
n)
]

(7.31)

≤ lim
n→∞

V (x, d∞
n+1) (7.32)

= W (x) . (7.33)

36

Thus all inequalities are equalities and we have

W (x) = lim
n→∞

max
a

[c(x, a) + β E
a
x V (x1, d

∞
n)] (7.34)

= max
a

[

c(x, a) + lim
n→∞

β E
a
x V (x1, d

∞
n)
]

(7.35)

= max
a

[

c(x, a) + β E
a
x lim

n→∞
V
(

x1, d
∞
n−1

)

]

(7.36)

= max
a

[c(x, a) + β E
a
x W (x1)] (7.37)

so that W solves the optimality equation and is therefore the optimal solu-

tion. Since there is strict imrovement at every step (otherwise we have the

optimal solution), and the number of policies is finite, we must have conver-

gence in a finite number of steps. Convergence of the policies follows by the

same argument, provided we have a fixed rule to choose when there is more

than one “argmax.”

As can be seen, some of the steps work without difficulty without the finite-

ness assumption, but some require more care.

To compute the optimal cost using policy iteration we need to solve for

V (x, d∞
n) at each step—that is, solve a system of |S| linear equations. The

expectation requires |S| sums, for each pair (x, a), for a total of roughly

|S|2|A| operations. In addition we need to compare |A| terms |S| times at

each iteration.

The Value iteration algorithm is defined as follows:

• Set V0(x) ≡ 0,

37

• Define

Vn+1(x) = max
a

[c(x, a) + β E
a
x Vn(x1)] ,

Exercise 7.18 Prove (and give conditions so) that the values computed by

the value iteration algorithm converge to the optimal value. Prove that this

remains true if V0(x) is chosen as any bounded function. Show that if the

state and action spaces are finite, then the optimal policy can be computed

as the maximizing argument. Does convergence occur in a finite number of

steps? Estimate the error in the policy after n steps, and number of steps

until the correct policy is found. Hint: the algorithm computes the optimal

policy for the finite horizon problem.

7.1 Discounted cost and Linear Programs: I

There is a direct way to derive a linear program, whose solution gives the

optimal cost. We restrict our attention to bounded costs.

Lemma 7.19 Let u(x) be a bounded function satisfying

u(x) ≥ max
a

(c(x, a) + β E
a
x V (x1)) . (7.38)

Then u(x) ≥ Vβ(x).

Exercise 7.20 Prove Lemma 7.19. Hint: add a new state ∆ and action a∆

so that px∆(a∆) = 1 and p∆∆(a) = 1 for all a. Set c(x, ∆) = u(x) for all

x 6= ∆, while c(∆, ∆) = 0. Now interpret u as the optimal cost.

38

Theorem 7.21 Let α(x) be positive constants so that
∑

x∈S α(x) = 1. Sup-

pose u(x) solves

Minimize
∑

x∈S

α(x)u(x) (7.39)

Subject to u(x) ≥c(x, a) + β E
a
x V (x1) for all x, a. (7.40)

Then u ≡ Vβ.

Proof. Follows immediately from Lemma 7.19.

Note that we could require only
∑

x∈S α(x) < ∞, but this is equivalent.

There is a different linear program we could use which, as it turns out, is

the dual of the one in Theorem 7.21. It is, however, more intuitive and more

useful. Define

fβ(x, π; y, a)
def
= (1 − β)

∞
∑

t=0

βt
P

π
x (x(t) = y, a(t) = a) . (7.41)

Note that fβ satisfies the following (here we hold β, x and π fixed):

fβ(x, π; y, a) ≥ 0 for all y, a, (7.42)
∑

y,a

fβ(x, π; y, a) = 1 . (7.43)

Moreover, let π be a stationary policy {d, d, . . .}. Then

∑

a

fβ(x, π; y, a) =

∑

s∈S

∑

a

βfβ(x, π; y, a)pyz(a) if y 6= x,

∑

s∈S

∑

a

βfβ(x, π; y, a)pyz(a) + (1 − β) if y = x.

(7.44)

39

To establish (7.44), we use the fact that, for t ≥ 1,

∑

a

P
π
x (x(t + 1) = y, a(t + 1) = a) = P

π
x (x(t + 1) = y) (7.45)

=
∑

s∈S

∑

a

P
π
x (x(t) = s, a(t) = a) psy(a).

(7.46)

If y 6= x then P
π
x (x(0) = y, a(0) = a) = 0 so that

∑

a

fβ(x, π; y, a) =
∑

a

(1 − β)
∞
∑

t=0

βt
P

π
x (x(t) = y, a(t) = a) (7.47)

= (1 − β)
∞
∑

t=1

∑

a

βt
P

π
x (x(t) = y, a(t) = a) (7.48)

= (1 − β)β
∞
∑

t=0

∑

a

βt
P

π
x (x(t + 1) = y, a(t + 1) = a)

(7.49)

= (1 − β)β

∞
∑

t=0

∑

s∈S

∑

a

βt
P

π
x (x(t) = s, a(t) = a) psy(a)

(7.50)

= β
∑

s∈S

∑

a

(1 − β)

∞
∑

t=0

βt
P

π
x (x(t) = s, a(t) = a) psy(a)

(7.51)

= β
∑

s∈S

∑

a

fβ(x, π; s, a)psy(a) . (7.52)

If y = x then, in the first equality above we have an additional term

(1 − β)
∑

a

P
π
x (x(0) = y, a(0) = a) = 1 − β ,

and (7.44) is established. We can re-write it in the form

∑

a

fβ(x, π; y, a) =
∑

s∈S

∑

a

βfβ(x, π; y, a)pyz(a) + 1{x=y}(1 − β) . (7.53)

40

On the other hand, suppose we have a set of numbers f(y, a) that sat-

isfy (7.42), (7.43) and (7.53). Define

d(y; a)
def
=

f(y, a)
∑

a f(y, a)
. (7.54)

Then (for π = {d, d, . . .}) we have f(y, a) = fβ(x, π; y, a).

Exercise 7.22 Prove the last assertion. Generalize the argument to the case

of initial distribution µ.

So, we have established the following.

Theorem 7.23 Consider a finite Discounted MDP. A stationary decision

rule d is optimal if and only if it satisfies (7.54) for some f(y, a), where

f(y, a) solves

Maximize
∑

a

∑

y

f(y, a) (7.55)

Subject to f(y, a) ≥ 0 for all y, a, (7.56)
∑

y,a

fβ(x, π; y, a) = 1 (7.57)

∑

a

fβ(x, π; y, a) −

∑

s∈S

∑

a

βfβ(x, π; y, a)pyz(a) = 1{x=y}(1 − β) (7.58)

Exercise 7.24 State and prove te analogue for the Constrained Optimization

problem. Assume the existence of an optimal stationary policy.

41

Example 7.25 ([11, Exampe 3.1]) Consider the following model of win-

dowing. Information is transmitted in a window of size i. The window size

changes from one time slot to the next according to some transition prob-

abilities {pij}. The only action we can take is to decide to reset—that is,

set the window size to 1. We pay c(i) for using a window of size i, and we

pay a penalty of R for resetting the window size. We make the following

assumptions:

c(i) is increasing in i (7.59)

∞
∑

j=k

pij is increasing in i, for each k. (7.60)

The first condition is certainly reasonable. The second is consistent with

windowing protocols: these usually increase window size if transission was

successful, and decrease if not, and the increase/decrease are either additive

of multiplicative. Therefore, our chances of having a large window in the next

step indeed increases if the present window size is increased.

Let us show that the optimal policy (minimizing the discounted cost) is a

threshold policy. That is, there exists some I so that we should reset if window

size is larger than I, and do nothing otherwise.

Our first step is to show that the value function V (i) is increasing in i. Note

that our second assumption can be written in the following way:

∞
∑

j=1

pij1{j≥k} is increasing in i, for each k.

The function 1{j≥k} is, for each k, an increasing function of j. It follows

42

that this condition is equivalent to the condition

∞
∑

j=1

pijf(j) is increasing in i, for each increasing function f .

Now apply our contraction mapping result: we start with a function V1 = c

and iterate using the operator T . In other words, we apply the optimality

operator:

Vn+1(i) = c(i) + min

{

R + βVn(1), β
∑

j

pijVn(j)

}

.

By our first assumption V1 is increasing. Make the induction hypothesis

that so is Vn. As argued above, our second assumption implies that if Vn is

increasing then

β
∑

j

pijVn(j)

is also increasing. Therefore Vn+1 is increasing, and hence also the limit, as

n → ∞, which is the value V .

Now looking at the optimality equation

V (i) = c(i) + min

{

R + βV (1), β
∑

j

pijV (j)

}

we note that our optimal action is to reset if and only if

R + βV (1) ≤ β
∑

j

pijV (j) (7.61)

(actually, if there is equality, it does not matter which action we take). How-

ever, the term on the left does not depend on i, while the term on the right

is increasing. So, if there is a finite I so that (7.61) holds, then we should

reset at that I and also at every state i > I. If there is no such I then we

set I = ∞.

43

Note that in order to obtain the structure of the optimal policy we do not

need to perform any computation. Moreover, the result is generic in that

it does not depend on specific parameters of the model: only on our two

monotonicity assumptions. In addition, this result makes the computation

of the optimal policy a much simpler matter, since we only need to find one

number I. This number can be obtained analytically, by approximating V

and using error bounds until we can decide whether 7.61 holds, by numerical

computations or by simulation.

44

8 Average Cost

Definition 8.1 The Average cost under policy π with initial state x is

Va(x; π) = lim inf
T→∞

1

T
E

π
x

[

T
∑

n=0

c(xn, an)

]

. (8.1)

Note that this is well defined under any of the following conditions:

• c is bounded below,

• c is bounded above,

• for each n,

E
π
x |c(xn, an)| < ∞ .

Under any of these conditions, the expected immediate cost may be inifinite,

but it is well defined. The condition depends on both initial state and policy!

Note that neither condition guarantees the existence of a limit: this is why

we resort to limit inferior.

The average cost is used when we do not care about “trasient behavior.”

Shifting time by one unit amounts to starting at a different initial state. As

we shall see, under some conditions, the cost is unchanged.

The average cost also measures “steady state” performance (if there is any).

It is more amenable to analysis then the steady state behavior: the latter is

known to produce many difficulties, since it is very sensitive. The average

cost, on the other hand, involves a Cesaro sum, and is relatively insensitive

to short-term phenomena.

45

Finally, as we shall see later, the average cost is reasonably easy to handle

from a mathematical and a computational point of view—at least if costs

are bounded and the chain is “indecomposeable” in the right sense. It is

therefore used as an approximation to other, even more challanging cost

structures (such as finite horizon cost with very long horizon).

Suppose π = {g, g, . . .} is a stationary deterministic policy. Then it is easy

to see that there is a Markov chain and action sequence {xπ
n, aπ

n, n ≥ 0}

where aπ
n = g(xπ

n). More generally, each policy π and initial state x induce

a process (not necessarily Markov!) {xπ
n, aπ

n, n ≥ 0} (where we omit the

initial state from the notation).

Definition 8.2 The Ergodic cost under policy π with initial state x is

Ve(x; π) = lim inf
T→∞

1

T

[

T
∑

n=0

c(xπ
n, aπ

n)

]

. (8.2)

This is a random variable, and we would expect that its mean is equal to

the average cost. In fact, under some structural conditions, even more is

true. The ergodic cost is a relatively new concept, and we postpone its

investigation.

Definition 8.3 The average MDP is to Maximize Va(x; π) over all policies

π.

Corollary 8.4 For the average MDP (both Optimization and Constrained

Optimization), Markov policies suffice.

46

Before we embark on structural results, let us develop some feeling for the

difficulties and pitfalls of the average criterion. First note that this criterion

is insensitive to finite-time phenomena, in a rather strong sense.

Lemma 8.5 Assume the costs are bounded. Fix x and π and let τ be a

positive random variable taking integer values. If P
π
x{τ < ∞} = 1 then

Ve(x; π) = lim inf
T→∞

1

T

[

T
∑

n=τ

c(xπ
n, aπ

n)

]

, (8.3)

Va(x; π) = lim inf
T→∞

E
π
x

1

T

[

T
∑

n=τ

c(xn, an)

]

. (8.4)

Proof. The ergodic case follows from the definition. For the average cost,

note that the sum is interpreted as 0 if τ > T . Fix an increasing function

f(T) so that

lim
T→∞

f(T) = ∞ (8.5)

lim
T→∞

f(T)

T
= 0 . (8.6)

Denote C = supx,a |c(x, a)|. Now write

Va(x; π) = lim inf
T→∞

E
π
x

1

T

[

τ∧T
∑

n=1

c(xn, an) +

T
∑

n=τ∧T

c(xn, an)

]

. (8.7)

But

E
π
x

1

T

τ∧T
∑

n=1

|c(xn, an)| ≤ E
π
x

C

T

[

f(T)1{τ≤f(T)} + T1{τ>f(T)}

]

(8.8)

≤ C
f(T)

T
+ C P

π
x{τ > f(T)} . (8.9)

47

Both terms go to zero as T → ∞ by the assumptions on τ and on f(T). This

proves the result.

Example 8.6 (Ross, V.1.1) This example shows that optimal policies need

not exist. The state space consists of all integers except 0. If x ≥ 0 then under

action u we go up one state, while under action s we switch signs to (−x),

both with probability 1. Once x < 0 you stay there. The cost is 0 at x > 0

and, for x < 0, c(x, a) = 1+1/x. Obviously, Va(1; π) < 1, and Va(1) = 1 but

there is no optimal policy.

Example 8.7 (Ross, V.1.2) This example shows that stationary determin-

istic policies need not be optimal. The state space consists of all positive in-

tegers and under action u we go up, while under s we stay put. We recieve

c(i, u) = 0 for going up and c(i, s) = 1 − 1/i for staying put. Obviously, the

value of the maximization problem starting at x(0) = 1 is 1. Now let g be a

stationary policy which, in state j, chooses action s. Then Va(1; g) ≤ a−1/j.

However, as the following exercise shows, we can come up with an optimal

policy.

Exercise 8.8 Let π be the non-stationary policy which upon entering state

i chooses action s i times and then chooses action u. Compute Va(1, π). Let

g be a stationary randomized policy defined by

p(u | i) = qi .

Can you achieve Va(1)? Hint: try qi decreasing.

48

In the previous example, although there is no optimal stationary policy, you

can get as close as you wish to the optimal cost, using stationary policies.

However, even this is not guaranteed.

Example 8.9 (Ross, V.1.3) Let S consist of all integers. Under action u

we have pii+1(u) = 1 for all i not equal to 0 or (−1). Also p−11(u) = 1.

Action s is available only for i > 0 and

pi−i(s) = αi = 1 − pi0(s) .

Finally, p00(u) = 1. The immediate cost satisfies c(i, u) = 2 for i < 0 and is

0 otherwise. The constants αn are chosen so that

αn < 1 ,

∞
∏

n=1

αn =
3

4
.

Suppose we start at state 1. Under a stationary policy, if we never use action

s then the cost is 0. But if we ever do, then each time state 1 is visited, there

is a fixed positive chance of never returning to state 1. But this implies that

T
∑

n=0

c(xn, an) < ∞

almost surely, so that the Cesaro limit is zero and so is its expectation. How-

ever, suppose we choose the following non stationary policy. Initially use s.

On our nth visit to state 1, choose action u n times and then choose s. In

this case, the probability that the process never enters state 1 is

∞
∏

n=1

αn =
3

4

and, since we get an immediate reward of 2 for exactly half of the time (and

0 the rest of the time) we have Va(1, π) = 3/4.

49

The fact that Markov policies suffice follows from our usual argument, since

this cost functional depends only on the one-dimensional marginals. The

next step should be to establish the principle of optimality.

Exercise 8.10 What would the principle of optimality say in this case?

Definition 8.11 The Poisson equation associated with a stationary policy f

is

g + h(x) = c(x, f(x)) + E
f
x h(x1) (8.10)

and (g, h) solving (8.10) are called a solution of the Poisson equation. The

optimality equation for the average cost problem is

g + h(x) = max
a

(c(x, a) + E
a
x h(x1)) . (8.11)

A pair (g, h) solving (8.11) is called a solution of the optimality equation.

Lemma 8.12 Supopse the cost is bounded and let (g, h) be a solution of the

Poisson equation for the policy f , with h bounded. Then g = Va(x; f) for all

x.

Proof. Just iterate, sum and then divide by the number of steps.

Theorem 8.13 Consider an average MDP with bounded costs. Let (g, h) be

a solution of the optimality equation, with h bounded. Then g = Va(x) for

all x.

50

Proof. see Ross.

Theorem 8.14 Consider an average MDP with bounded costs. If there is

a bounded solution to the optimality equation, then here exists an optimal

policy which is Markov and deterministic. The value function is the unique

bounded solution of the optimality equation, and any Markov policy which

satisfies the optimality equation is optimal.

Proof. See Ross.

In contrast to the discounted case, the optimality equation need not find all

the optimal policies. This is not very well known (but, nonetheless, true).

Example 8.15 (K.W. Ross) Let S = {0, 1} and A = {d, r}. Under d

0 1

r: p=0.5, c=2

d: p=1, c=1

r: p=0.5, c=2

r: p=0.5, c=2

d: p=1, c=2

r: p=0.5, c=2

Figure 1: Optimal policies may not solve the Optimality Equation

we go down from 1 to 0 with probability 1 (or stay in 0). Under action r

we randomize: with probability 0.5 we switch states, and with probability 0.5

we stay put. The cost is c(1, u) = 1 and c(x, a) = 2 otherwise. Then the

51

stationary (deterministic) policies

g1(0) = g1(1) = d (8.12)

g2(0) = g2(1) = r (8.13)

are both optimal, since under g1 we move to state 0 and then always get 2,

while under g2 we always get 2. However, it is clear that under the discounted

cost (for any discount factor), using d at state 1 is not optimal, so we ex-

pect that g1 may not solve the optimality equation! Indeed, the optimality

equations for this example are

h(0) + 2 = max [2 + h(0); 2 + 0.5h(0) + 0.5h(1)] (8.14)

h(1) + 2 = max [1 + h(0); 2 + 0.5h(0) + 0.5h(1)] (8.15)

and indeed, in state 1 the action d is not maximizing!

52

References

[1] E. Altman Constrained Markov decision processes To appear, 1998.

New book, advanced.

[2] D. P. Bertsekas Dynamic programming and stochastic control Academic

Press 1976

Engineering approach, basics.

[3] D. P. Bertsekas and S. E. Shreve Stochastic Optimal Control Academic

Press New York 1978

Very mathematical.

[4] Cyrus Derman Finite state Markovian decision processes Academic

Press New York 1970

Standard reference for the finite case.

[5] Eugene A. Feinberg and Adam Shwartz Handbook of Markov Decision

Proccesses: methods and applications Kluwer, 2002.

Collection of advanced articles on the state of the art in Markov Deci-

sion processes, including applications to communication networks and

other applications. Some articles are mathematically challenging, some

are not.

[6] D. P. Heyman and M. J. Sobel Stochastic Methods in Operations Re-

search I: Stochastic Processes and Operating Characteristics McGraw-

Hill New York 1982

53

[7] D. P. Heyman and M. J. Sobel Stochastic Methods in Operations Re-

search II: Stochastic Optimization McGraw-Hill New York 1984

A standard reference; covers much more.

[8] A. Hordijk Dynamic programming and Markov potential theory, Math-

ematical Centre Tracts 51, Mathematisch Centrum, Amsterdam, 1977.

Deep, theoretical classic, hard to read and somewhat old style.

[9] H.J. Kushner Introduction to stochastic control, Hold Reinhart Win-

ston 1971.

Sample path approach, quite different from the rest and worthwhile.

Watch out for the many typoes!

[10] M. L. Puterman Markov decision processes Elsevier Science Publishers

1990

Very detailed, very strong on computational techniques.

[11] S. M. Ross Introduction to Stochastic Dynamic Programming Academic

Press 1984

Elementary, very good intuition, but be careful with proofs!

[12] H. C. Tijms Stochastic Modelling and Analysis: a computational ap-

proach John Wiley New York 1986

Good introduction to the modelling aspect.

[13] P. Whittle Optimization over time; dynamic programming and stochas-

tic control Wiley 1983

Comprehensive, good intuition, sometimes sloppy proofs.

54

