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Chapter 1

Introduction



Abstract

In this chapter we describe the basic structure of a Markov Decision Process.
We introduce the notation and then give a quick tour of this volume. At
this point, we use this as information for authors, with examples.



Clsec:notation|

1.1 Introduction

In this section we shall introduce the volume, its purpose, etc. including a

heuristic descripjé(in of what an MDP is (in contrast to the formal presen-
sec:notation

tation of section [1.2).

1.2 Notation

Let N = {0,1,...} and let R” be an n-dimensional Euclidean space, R = R'.
A Markov Decision Process (MDP) is defined through the following objects:

a state space X;

an action space A;

sets A(x) of available actions at states = € X;

transition probabilities, denoted by p(Y|z,a);

reward functions r(z,a) denoting the one-step reward using action a in
state x.

The above objects have the following meaning. There is a stochastic
system with a state space X. When the system is at state x € X, a decision-
maker selects an action a from the set of actions A(x) available at state x.
After an action a is selected, the system moves to the next state according to
the probability distribution p(-|z,a) and the decision-maker collects a one-
step reward r(x, a). The selection of an action a may depend on the current
state of the system, the current time, and the available information about
the history of the system. At each step, the decision maker may select
a particular action or, in a more general way, a probability distribution
on the set of available actions A(x). Decisions of the first type are called
nonrandomized and decisions of the second type are called randomized.

Discrete MDPs. An MDP is called finite if the state and action sets are
finite. We say that a set is discrete if it is finite or countable. An MDP is
called discrete if the state and action sets are discrete.

A significant part of research and applications related to MDPs deals
with discrete MDPs. For discrete MDPs, we do not need additional measur-
ability assumptions on the major objects introduced above. Readers who
are not familiar with measure theory can still read the papers of this volume,
since most of the papers deal with discrete MDPs: for the other papers, the
results may be restricted to discrete state and action sets.

For a discrete state space X we denote the transition probabilities by
p(y|z, a) or pyy(a), and use (in addition to z,y) also the letters i, j, k etc. to



denote states. Unless mentioned otherwise, we always assume that p(X|z,a) =
1.

The time parameter is ¢,s or n € N and a trajectory is a sequence
xopapria ... . The set of all trajectories is Hoo = (X x A). A trajectory
of length n is called a history, and denoted by h,, = xgag...Tn_10p_1Ty.
Let H, = X x (A x X)" be the space of histories up to epoch n € N. A
nonrandomized policy is a sequence of mappings ¢,, n € N, from H, to
A such that ¢, (zoao...zp—10n—12,) € A(xy,). If for each n this mapping
depends only on x,, then the policy ¢ is called Markov. In other words, a
Markov policy ¢ is defined by mappings ¢,, : X — A such that ¢, (z) € A(x)
for all z € X, n =0,1,... . A Markov policy ¢ is called stationary if the
¢y, do not depend on n. A stationary policy is therefore defined by a single
mapping ¢ : X — A such that ¢(x) € A(x) for all z € X. We denote by II,
M and TI9 the sets of all nonrandomized, Markov, and stationary policies
respectively. We observe that II1° C TM C II.

As mentioned above, by selecting actions randomly, it is possible to ex-
pand the set of policies. A randomized policy 7 is a sequence of transition
probabilities 7, (ap|hy) from H,, to A, n € N, such that 7, (A(x,)|xoag ... Tn_1an-1Tn) =
1. A policy 7 is called randomized Markov if 7, (a,|zoag - .. Tp—1an—12,) =
Tn(an|xn). If mp(-|z) = mp(¢|x) for all m,n € N then the Markov policy
is called randomized stationary. A randomized stationary policy 7 is thus
defined by a transition probability 7 from X to A such that 7(A(z)|z) =1
for all z € X. We denote by IT%, 1M 175 the sets of all randomized,
randomized Markov, and randomized stationary policies respectively. We
have that IS C IT#M C T1%, and in addition 115 C 175, IIM C IIRM | and
IT C TI%.

Note that, while we try to be consistent with the above definitions, there
is no standard terminology for policies: in particular, there is no general
agreement as to whether “stationary” implies nonrandomized or, more gen-
erally, whether the “default” should be randomized (the more general case)
or nonrandomized. The following additional terms are sometimes also used:

pure policy means nonrandomized;

deterministic policy means (nonrandomized) stationary.

The stochastic process evolves as follows. If at time n the process is in
state x, having followed the history h,, then an action is chosen (perhaps
randomly) according to the policy 7. If action a ensued, then at time n + 1
the process will be in the state y with probability p(y|z,a).

Given an initial state z and a policy m, the “evolution rule” described
above defines all finite-dimensional distributions xg, ag, ... ,zn, n € N. Kol-
mogorov’s extension theorem guarantees that any initial state z and any



policy 7 define a stochastic sequence zpapziai ... . We denote by PT and
E7 respectively the probabilities and expectations related to this stochastic
sequence; PT{zxg =z} = 1.

Any stationary policy ¢ defines a Markov chain with transition proba-
bilities pgy(¢) = p(y|z, ¢(x)) on the state space X. A randomized stationary
policy 7 also defines a Markov chain with the state space X. In the latter
case, the transition probabilities are pey(7) = > cp) T(@)p(ylz,a). We
denote by P(r) the transition matrix with elements {p,,(7)}. The limiting
matrix

Q(m) = lim —ZP” (1.1)

N—oo N

. . . . . . . Chun .
always exists and it is stochastic if X is finite; Chung [[Z, éectlon 1.6]. Let
f be a terminal reward function and g be a discount factor. We denote by
vy (z,m, 3, f) the expected total reward over the first n steps, n € N:

on(z,m, B3, f) = Zﬁ (T, an) + BN flan) |, (1.2) [Cle:DefFinRew

whenever this expectation is well-defined.

If 8 € [0,1] then we deal with expected total discounted reward. If § =1,
we deal with expected total undiscounted reward or simply total reward. If
the discount factor 8 € [0,1] is fixed, we usually write v(x,7) instead of
v(z, T, 3).

The expected total reward over an infinite horizon is

v(z,7) =v(x, T, 0) = Vo, m, 3,0) . (1.3) [Cle:DefDiscCost

Conditions for the total reward v(z,m, 1) to be well-defined are usually
stronger than the conditions that ensure that total discounted rewards v(z, 7, 3),
0 < B < 1, are well-defined. The expected reward per unit time is

1
w(z,m) = liminf Zoy (@, 7, 1,0). (1.4)

n—oo

If a performance measure g(x,7) is defined for all policies 7, we denote

G(x) = sup gl ). (1.9

mellR



In terms of the performance measures defined above, this yields the values

VN(IHB’f) d;f sup UN(‘Taﬂ-vﬁvf)’ (16)
rellR

V() =V(z.0) Y sup vl 9), (1.7)
rellR

W (z) et sup w(z, ). (1.8)
TellR

For € > 0, a policy 7 is called e-optimal for criterion g if g(z,7) > G(x)—¢
for all x € X. A 0-optimal policy is called optimal.
For a function f on X, we consider the reward operators:
a def
Pef(z) = E[f(21) | z0 = 2,a0 = q] , (1.9)
181 (x) Y r(z,0) + BPf(2) (1.10)

and the optimality operators:

Pf(x) ™ sup Pf(a), (1.11)
acA(zx)

Tpf(z) e sup T5f(x). (1.12)
acA(x)

The finite horizon Optimality Equation is
Vnti(z) = TaVn (), N=0,1,.... (1.13)
The discounted reward Optimality Equation is
V(z) =13V (z). (1.14)

An action a € A(x) is called conserving at state = for the (N + 1)-step
problem if T§Vy(z) = T3Vn(z). An action a € A(z) is called conserving at
state z for the total discounted reward if TgV (z) = TV ().

When 8 =1 we denote T* = T}* and T' = Tj. In particular,

V(z) =TV(z) (1.15)

is the Optimality Equation for expected total undiscounted rewards.

For total reward criteria, value functions usually satisfy the optimality
equation. In addition, the sets of conserving n-step actions,n =1,... ,N+1
form the sets of optimal actions for (N + 1)-step problems. Under some

|Cle:DefFinValue|

[Cle:DefDiscValue]

[Cle:DefAvValue]

‘Cle:Transter‘

Cle:DiscOper

‘Cle:TransttOper‘

‘Cle:DiscOptOper‘

‘Cle:FinHorOptEq‘

‘Cle:DiscOptEq‘

Cle:TotOptEq



additional conditions, the sets of conserving actions form the sets of optimal
actions for infinite horizon problems. We shall consider these results in
appropriate chapters. The average reward Optimality Equations are

W(z) = PW(z) (1.16)
W(z) + h(z) = SE}() )Tah(x) , (1.17)
where
A(z) ={a € A(x) : P"W(z) = PW(x)} . (1.18)

. Cle:AvOptEgl . . . . . Cle:AvOptEg2
Equation (1.16; S catiod the First Optimality Equation and equation (II-

is called the Second Optimality Equation. Note that if W(z) = W, a con-
stant, then the First Optimality Equation holds and A’(z) = A(x). In this
case, the Second Optimality Equations transforms into

W + h(z) = Th(x) (1.19)

which is often referred to simply as the Optimality Equation for average
rewards.

We allow for the starting point = to be defined by an initial probability
distribution p. In this case, we keep the above notation and definitions but
we replace the initial state x with the initial distribution p. For example,
we use P7, B, v(p, ), V(u), w(p, 7), and W (u). We remark that, generally
speaking, optimality and e-optimality with respect to all initial distributions
are stronger than the defined above optimality and e-optimality with respect
to all initial states. However, in many natural cases these definitions are
equivalent. For example, it is true for total reward criteria.

A more general problem arises when there are multiple objectives. Sup-
pose there are (K + 1) reward functions ri(x,a), k = 0,... , K. For finite
horizon problems, terminal rewards may also depend on k. In this case, we
index by £k =0,..., K all functions that describe rewards. For example, we
use the notation wy(z, 7), fr(z), and Wi(x).

For problems with multiple criteria, it is usually natural to fix an initial
state x. It is also possible to fix an initial distribution g, with our con-
vention that all definitions remain the same, but we write p instead of .
So, for simplicity, we define optimal policies when the initial state = (not a
distribution) is fixed.

If the performance of a policy 7 is evaluated by (K + 1) criteria g (z, )
then one goal may be to optimize criterion gy subject to constraints on



gi,.-- ,9K. Let Cx, Kk =1,... , K, be given numbers. We say that a policy
7 is feasible if

gk(I,ﬂ')ZCk, k?Zl,... ,K. (1.20)

A policy 7 is called optimal for a constrained optimization problem if it is
feasible and

go(z,m) > go(x,0) for any feasible policy o. (1.21)

Nondiscrete MDPs: general constructions. When a state space X or
an action space A are is not discrete, the natural assumption is that they
are measurable spaces endowed with o-fields X and A respectively. When
X or A are discrete, the corresponding o-field is the set of all subsets of
the corresponding set. It is also natural to assume that the sets A(z) € A
of feasible actions are measurable, for all states = € X. Of course, this
assumption always holds when A is discrete.

Unless we specify otherwise, we always consider a Borel o-field B(R)
on R: this is the minimal ¢ field containing all intervals. For non-discrete
MDPs, we also assume that r is a measurable function on (Xx A, X' x A) and
p(Y|z,a) is a regular transition probability from (X x A, X x A) to (X, X).
Recall that given two measurable spaces (E1,&1) and (Fs, &), we call p a
regular transition probability from E; to Es if the following two conditions
hold: (i) p(-|e2) is a probability measure on (E1,&;) for any es € Es, and
(ii) the function p(B|-) is measurable on F; for any B € &;.

In order to define policies in the general situation, we consider o-fields
Hp = X x (A x X)" on the sets of histories H,, = X x (A x X)". Nonran-
domized and randomized strategies are defined in a way similar to discrete
MDPs, with standard and natural additional measurability conditions: (a)
nonrandomized policies 7 are defined by mappings m, which are measur-
able on (H,,H,), and (b) stationary and Markov policies are defined by
mappings which are measurable on X x A. Similarly, for randomized poli-
cies, m, are regular transition probabilities from (H,,H,) to (A, .A) and,
for randomized Markov and stationary policies, they are regular transition
probabilities from (X x A, X x A) to (A, A). .

Let Hoo = (X x A)*. Tonescu Tulcea theorem, Neveu %, Section 5.1],
implies that any initial state x and policy m define a unique probability
measure on (Hs, Hoo). We denote this measure by PT. Sometimes it is
called the “strategic” measure. We denote by E7 expectations with respect
to this measure. We also notice that Ionescu Tulcea theorem implies that P7,

|C1e:DefFeasib1e
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is a regular transition probability from (X, X) to (Hso, Hso) and this implies
that the functions v, (x, 7,3, f) and v(x, 7, 3) are measurable in x for any
policy 7 (the terminal function f is also assumed to be measurable).

We remark that we use lonescu Tulcea theorem instead of better known
Kolmogorov’s extension theorem primarily because the latter requires ad-
ditional assumptions about the structure of the state space (it has to be
Borel) and the first one has no such structural assumptions.

At the intuitive level, randomized decisions are more general than non-
randomized ones; this means that any nonrandomized policy belongs to the
class of randomized policies. In addition, in order to avoid trivial situation,
an MDP has to have at least one policy. In order to guarantee these two
intuitive properties, we always assume the following two mild conditions:
(i) all one-point sets {a} are elements of A, a € A; (ii) there is at least one
measurable function ¢ from X to A such that ¢(z) € A(z) for all z € X
The first assumption always holds for models with discrete state and action
spaces. The second assumption always holds for models with discrete state
spaces.

For a measure v and a measurable function f we use the equivalent
notations

def

v [ @) sw). (1.22)

If we denote 7, () = 7(-|z) for a randomized stationary policy 7 then, sim-
ilarly to discrete MDPs, this policy defines a Markov chain with transition
probabilities p(dy|z,m,). If X is discrete, this chain has transition matrix
P(m) with elements pg, (7).

Thus, an MDP, strategies, and objective functions can be defined under
very general conditions. However, very little can be done if one tries to ana-
lyze MDPs with arbitrary measurable state spaces. The first complication is
that the value functions V' may not be measurable even for one-step models.
The second complication is that an important step in the analysis of MDPs
is to construct an equivalent randomized Markov policy for an arbitrary pol-
icy; see Chapter 777. This can be done by constructing regular transition
probabilities P7(day,|z,) which may not exist for general state and action
spaces. These two complications do not exist if the state space is countable.
These two complications can be resolved if X and A Borel spaces. In addi-
tion, at the current state of our knowledge, there is no clear need to consider
MDPs with arbitrary state measurable spaces because there is no clear mo-
tivation or practical needs for such objects. For example, MDPs with Borel
state spaces have applications to statistics, control of models with incom-



plete information, and to inventory management. However, for example, we
are not aware of possible applications of MDPs with state spaces having
higher cardinality than continuum.

Discrete state MDPs. In this case, the state space X is discrete and
the action space is a measurable space (A,.A) such that all one-point sets
are measurable. The sets of feasible actions A(x) are also elements of A.
Reward functions r(z,a) and transition probabilities p(y|x, a) are automat-
ically measurable in a. All constructions described for discrete and general

MDPs go through with X being the o-field of all subsets of X.

Classical Borel MDPs. Though we do not follow any particular text,
all definitions, constructions, and statements, related to Bore] spaces we
mention in this chapter can be four% in Bertsekas gd Shreve [T, Chapter
7]; see also Dynkin and Yushkevich [3] and Kechris %1

Two measurable spaces (E1,&1) and (Fs, &) are called isomorphic if
there is a one-to-one measurable mapping f of (E1,&1) onto (Fa, &) such
that f~! is measurable. A Polish space is a complete separable metric space.
Unless we specify otherwise, we always consider a Borel o-fields B(E) on a
metric space F; B(F) is the minimal o-field containing all open subsets of E.
Of course, any measurable subset E’ of a Polish space forms a Polish space
endowed with the Borel o-field which is the intersection of £’ with Borel
subsets of the original space. A measurable space (E,£) is called Borel
if it is isomorphic to a Polish space. All Borel spaces are either finite or
countable or continuum, and two Borel spaces with the same cardinality are
isomorphic. Therefore, uncountable Borel spaces are continuum. They are
also isomorphic to each other and to the sets (R, B(R)) and ([0, 1], B([0, 1])).

The assumptions for Borel MDPs are:

(i) X and A are Borel spaces and X and A are corresponding Borel
o-fields;

(ii) the graph

Gr A(z) ={(z,a)| zr € X,a € A(z)}

is a measurable subset of X x A and there exists at least one measurable
mapping ¢ of X into A such that ¢(z) € A(x) for all z € A(x);

(iii) the reward functions 7(z,a) are measurable on X x A and the tran-
sition probabilities p(:|z,a) are regular transition probabilities from X x A

to X.



Conditions (i) and (iii) are similar to the corresponding assumptions for
general models. The measurability of the graph in (ii) implies that the sets
A(z) are measurable. The existence of a measurable mapping (often called
a “selector”) implies that A(z) # () for all z. We remark that it is possible
that the graph is Borel and all images are non-empty but the graph does
not contain a Borel mapping. Therefore, the second assumption in (ii) is
essential for the existence of at least one policy.

As was discussed above, the first real complication is that even for one-
step problems, the values V' may not be Borel measurable functions on
X. However, conditions (i)-(iii) imply that these functions are universally
measurable for finite and infinite-horizon problems and therefore optimality
operators can be defined.

Here we explain the concepts of universally measurable sets and func-
tions. Let (F,&) be a Borel space. For a given probability measure p on
(E,E), define a o-field £, which is a completion of £ with respect to mea-
sure p. That is, £, is the minimal o-field that contains £ and all subsets
F of E such that F C F’ for some F’' € £, and p(F') = 0. For example,
if (E,&) = (]0,1],B([0,1])) then we can consider the Lebesgue measure m
defined by m([a,b]) = |b—a|. Then &,, is the so-called Lebesgue o-field. Let
P(F) be the set of all probability measures on E. Then the intersection of
all o-fields &, U(FE) = Ngpep(p))Ep, is a o-field and it is called the universal
o-field. This o-field is also called the o-field of universally measurable sets
and its elements are called universally measurable subsets of E. A univer-
sally measurable function on X is a measurable mapping from (X,U (X)) to
(R, B(R), where U(X) is a universal o-field on X. Of course, any Borel set
and any Borel function are universally measurable.

Thus, optimality equations can be defined for Borel MDPs. However,
there is another complication for Borel models, which is annoying mostly
for aesthetic reasons: e-optimal policies may not exist for small positive e,
even for one-step Borel MDPs with bounded reward functions. The example
constructed by David Blackwell is based on the observation that the value
function is universally measurable but it may not be Borel. However, for
any policy, the expected one-step reward is a Borel function of the initial
step. Moreover, it is possible to show that for the Borel MDP described
above, for any initial measure p on X, and for any € > 0 there exists a policy
which is p — a.s. e-optimal. Such policies are called (p, €)-optimal.

Universally measurable Borel MDPs. If we expand the set of policies
and consider universally measurable policies, e-optimal policies exist and the



concept of (p, €) optimality is not needed. However, if we expand the set of
policies, the results and their proofs hold for assumptions which are broader
than (ii) and (iii).

Before we give formal definitions, we explain the concept of analytic sets.
Let f is a measurable mapping of a Borel space (F1, &) into Borel x space
(E,E). If F € € then by definition f~1(F) € £;. However, it is possible that
f(E) ¢ & for some Borel set ' € . A subset F' of a Borel space (E,&)
is called analytic if there exists a Borel space (£1,&1) and a measurable
mapping of £ to E such that F' = f(Fy) for some Fy € &.

Since one can select F1 = E and f(e) = e, every Borel set is analytic. It
is also possible to show that any analytic set is universally measurable. It
is also possible to consider the o-field of analytically measurable sets which
is the smallest o-field containing all analytic subsets of an analytic set. We
remark that Borel and universally measurable o-fields consist respectively
of Borel and universally measurable sets. The situation is different for an-
alytic sets and o-fields of analytically measurable sets. The complement of
an analytic set may not be analytic. Therefore, the o-field of analytically
measurable sets contains sets other than analytic. We remark that there are
many equivalent definitions of analytic sets. For example, for Polish spaces
they can be defined as continuous images or even as projections of Borel
sets.

If (E,€) and (E1, &) are two Borel spaces (Borel sets with Borel o-fields)
then the mapping f : F — Fj is called universally (analytically) measur-
able if f~1(B) belongs to the o-field of universally (analytically) measurable
subsets of F.

The assumptions for universally measurable MDPs are:

(a) The state and action spaces (X, X') and (A, .A) are Borel spaces;

(b) Gr A(z) is an analytic subset of X x A and all sets A(x) are not
empty;

(¢) The reward function 7(z,a) is an upper analytic function on X x A,
that is, for any real number ¢, the set {r > ¢} is an analytic subset of X x A;

(d) The transition function p(:|z,a) is a regular transition probability
from (X x A, X x A)to (X, X).

Assumptions (a) and (d) coincide with similar assumptions for Borel
MDPs. According to Jankov—von Neumann theorem, assumption (b) implies
that there is an analytically measurable mapping ¢ from X to A such that
¢(x) € A(zx) for all z € X. Of course, any analytically measurable mapping is
universally measurable. Assumption (c) is more general than the assumption
that 7(z,a) is Borel. This generality is unimportant. It is kept in the
literature just because the same proofs holds for upper analytic and Borel

10



reward functions.

The last important difference between Borel and universally measurable
MDPs is that policies are universally measurable for the latter ones. Non-
randomized policies are universally measurable mappings ¢,, of H,, to A such
that ¢(hy,) € A(x,) for any h,, = xoa, ...z, € H,. Markov (and stationary)
policies are defined by universally measurable mappings ¢, of X to A such
that ¢, (z) € A(z) (¢(z) € A(x)) for all z € X. Randomized, randomized
Markov, and randomized stationary policies are regular transition probabil-
ities defined in the same way as for general models but the sets H, and X
are endowed with o-fields of universally measurable subsets that play the
role of o-field & in the definition of regular transition probabilities given
above. Condition (b) implies that there exists at least one policy.

There are other versions of universally measurable MDPs. For example,

ne can consider analytically measurable policies; see Bertsekas and Shreve
for details. The important feature is that all definitions and notations,
given for discrete MDPs, hold also for universally measurable MDPs.

1.3 What’s in this volume

To be written.
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