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Abstract

We consider a general single-server multiclass queueing system that incurs a delay

cost Ck(�k) for each class k job that resides �k units of time in the system. This paper

derives a scheduling policy that minimizes the total cumulative delay cost when the

system operates during a �nite time horizon.

Denote the marginal delay cost and (instantaneous) service rate functions of class

k by ck = C0
k and �k , and let ak(t) be the \age" or time that the oldest class k job has

been waiting at time t. We call the scheduling policy that at time t serves the oldest

waiting job of that class k with the highest index �k(t)ck(ak(t)), the Generalized c �

Rule. As a dynamic priority rule that depends on very little data, the Generalized c �

Rule is attractive to implement. We show that with non-decreasing convex delay costs,

the Generalized c � Rule is asymptotically optimal if the system operates in heavy

tra�c, and give explicit expressions for the associated performance characteristics:

the delay (throughput time) process and the minimum cumulative delay cost. The

optimality result is robust in that it holds for a countable number of classes and several

homogeneous servers in a non-stationary, deterministic or stochastic environment where

arrival and service processes can be general and interdependent.

1 Introduction

We consider a general single-server multiclass queueing system that incurs a delay cost Ck(�k)

for each class k job that resides �k units of time in the system. Since queueing theory is

the natural paradigm to study dynamic competition for scarce resources, it is interesting to

0AMS 1991 subject classi�cations: Primary: 90B35, 90B22. Secondary: 60K25, 60J70, 93E20.
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Figure 1: The Scheduling Problem

think of our system as modeling order ful�llment at a �rm which dynamically receives orders

(\jobs") from customers for several di�erent types or classes of goods and services it provides

as shown in Figure 1. In addition to the usual revenue and operating cost associated with

�lling an order, the �rm incurs a delay cost Ck(�k) for each class k order that takes �k units

of time to �ll. (The order ful�llment time � is also called throughput time, response time or

cycle time.) The purpose of the paper is to show how the �rm should sequence the di�erent

orders that are competing for its scarce resources in order to minimize the total cumulative

delay cost during a �nite time horizon.

Many providers of goods and services are experiencing an increase in the variety and

degree of customization in their customer orders. At the same time, service quality met-

rics such as order ful�llment time are increasingly important in environments where time

performance provides a source of competitive advantage. When facing a delay-sensitive eco-

nomic environment characterized by a high degree of uncertainty, decisions about allocation

of scarce resources to orders can be important to the performance of the �rm.

Denote the marginal delay cost function for class k by ck = C
0

k. If the functions Ck are

linear (and the marginal delay costs constant), the well known c � Rule gives the optimal

sequence under mild additional assumptions. Denoting by 1=�k the average processing time

for class k, we associate with each waiting class k job the index ck�k and at each decision

point serve the class with the highest index. (With linear delay costs, it does not matter

how jobs are sequenced within a class.) Thus, small jobs that are costly to delay are given
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Figure 2: Non-linear Convex Delay Costs.

priority. This static priority rule is robust in that it is optimal in many settings where

delay costs are linear. It appears that the optimality of the c � Rule was �rst suggested by

Smith [31] for a deterministic, static (that is, all jobs are present at time 0 and no dynamic

arrivals are allowed) environment. Cox and Smith [5] seem to be the �rst to have shown

optimality for a stochastic, dynamic (multiclass M/G/1) environment with arbitrary time

horizon. The c � Rule was also shown to be optimal in stochastic, static settings (e.g., see

[24, 25]). Many extensions have been developed. For example, Klimov [18] extended the c �

Rule to multiclass M/G/1 systems with feedback, Harrison [12] showed optimality of a more

complex static priority rule when delay costs are discounted in multiclass M/G/1 systems,

and Tcha and Pliska [32] studied the combination of discounting and feedback (again a static

priority rule is optimal). More recently, Buyukkoc, Varaiya and Walrand [1] and Hirayama,

Kijima and Nishimura [15] have shown that the c � Rule also extends to discrete time systems

with general arrival patterns and DFR service times, and Nain [23] generalized to continuous

time, discounting and partial feedback. De Serres [6] has shown that a c � Rule can also

arise when scheduling and ow control are optimized simultaneously.

In practice however, delay cost functions are usually non-linear. This non-linearity may

stem from physical phenomena (e.g., processing perishable goods or landing fuel-limited

aircraft) or, more frequently, from customer expectations. A customer often expects a certain

delay or is quoted one in the form of a promised delivery date. The marginal cost to the

�rm of not meeting the expected delay or due-date is usually much higher than the marginal

cost when the customer's expectations are realized, as shown in Figure 2. This cost includes
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not only traditional holding costs, but also the opportunity cost of future lost sales and

other strategic e�ects such as a decrease of customer good will, market reputation and

credibility. Shycon and Sprague [30] show empirical data that out-of-pocket delay costs in

the food industry are strongly convex increasing even without taking opportunity costs into

account. Chardaire and Lesk [2] argue that packet-switched computer networks are severely

constrained in the delay that can be incurred in each node, giving rise to non-linear delay

costs. Thadhani [33] presents empirical data that productivity in interactive computing

is a non-linear function of computer response time. Other domains where timeliness is

important are software development, securities trading, airline reservation systems, banking

and communication systems, as discussed by Dewan and Mendelson [7]. Finally, the common

practice in manufacturing environments of expediting orders that have been waiting too

long|and thus violating the static priority rule|gives empirical evidence that marginal

delay costs increase when the delay increases.

Denote the \age" or the time that the oldest class k job has been waiting at time t by ak(t),

and let �k be the instantaneous service rate function of class k. We will refer to the scheduling

policy that at time t serves the oldest waiting job of that class k with the highest index

�k(t)ck(ak(t)) as the Generalized c � Rule. This paper will show that with non-decreasing

convex delay costs, the Generalized c � Rule is \approximately optimal" if the system is

\operating near full capacity" and will give explicit expressions for its associated performance

characteristics: the delay (throughput time) process and the minimum cumulative delay

cost. (These statements will be spelled out and proved in precise mathematical terms in the

following sections). The optimality result is robust in that a countable number of classes

and several homogeneous servers are allowed in a non-stationary, deterministic or stochastic

environment where arrival and service processes can be general and interdependent. The

Generalized c � Rule is a dynamic or time-dependent priority rule that depends on very

little data (service rate and age) and is thus inexpensive and simple to implement. In the

presence of due-dates, it shows that the practice of scheduling late orders according to both

their lateness penalty and expected processing time is sound.

Among the scheduling research that does address non-linear problems, most studies con-

sider static environments (e.g., see [25, 26, 27, 29, 35]). Veklerov [34] shows that results

for static scheduling problems do not necessarily generalize to a dynamic setting. Haji and

Newell [9] study the related problem of scheduling two classes with convex delay cost during
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a \rush hour" in which the arrival rate exceeds the service rate. By \neglecting stochastic

e�ects and justi�cations of approximations" [9, p. 228], they solve a calculus of variations

problem with a two-dimension speci�c method and arrive also at the policy which we call

the Generalized c � Rule. Our work generalizes the latter and is di�erent in that it employs a

method that is independent of the dimension (the number of classes), incorporates stochas-

tic e�ects, provides expressions for the delay process and for the lower bound on cumulative

delay cost, and shows the optimality of the Generalized c � Rule while being explicit about

the necessary assumptions.

This paper uses the framework introduced by Harrison [10] that endows a processing

network model with dynamic control capability and then takes a \heavy tra�c limit". Har-

rison's paper has started a whole body of research. Like Harrison and Wein [14, 13], Wein

[36, 37, 38, 39, 40], Kelly and Laws [17], we have a special structure which is amenable to

analysis and yields an explicit dynamic scheduling policy. Like Krichagina et al. [19], Kush-

ner et al. [20, 21], and Martins et al. [22], we give a rigorous proof of optimality (without

requiring the same degree of mathematical sophistication for our setting). Our approach

di�ers slightly from this stream of research in that it starts with a deterministic or pathwise

analysis and considers a broader class of scheduling control policies.

The paper is organized as follows. In the next section we present our model and discuss

our methodology. Section 3 analyzes the model and Section 4 shows the main optimality

results of the Generalized c � Rule. We conclude in Section 5 with extensions and discussion.

2 Model and Methodology

Consider a general single-server multiclass queueing system that operates during the �nite

time horizon, t 2 [0; n]. Jobs arrive at the system and require a service. Jobs are categorized

into d (for dimension) di�erent classes depending on their speci�c arrival patterns, service

requests, and time delay sensitivity. A class k job resides in the system for an amount of

time �k (which consists of actual processing time and waiting delays), inicts a delay cost

Ck(�k) onto the system, and then departs.

The model has three primitives: a d-dimensional arrival processA, a d-dimensional service

process S, and a d-dimensional delay cost function C where each component Ck : RI + ! RI + is

non-decreasing convex. Ak(t) represents the number of class k jobs that have arrived during
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[0; t] and Sk(t) is the number of class k jobs that are served during the �rst t time units that

the server devotes to class k. Construct d sequences of interarrival times fuk;i : i 2 NI g for

k = 1; � � � ; d and a corresponding partial sums process U such that

Uk(j) =
bjcX
i=1

uk;i with Uk(0) = 0; (1)

Ak(t) = maxfj 2 NI : Uk(j) � tg: (2)

Uk(j) is the arrival time of the jth class k job. Similarly, one can construct d sequences of

service times fvk;i : i 2 NI g for k = 1; � � � ; d and a corresponding cumulative service process V ,

where Vk(j) is the total service requirement of the �rst j class k jobs. For ease of exposition,

we assume that the system is empty at time t = 0. (Section 5 discusses how to incorporate

di�erent initial conditions.)

The objective is to determine a scheduling policy that minimizes the cumulative delay

cost function J , possibly at every point in time. Denoting by �k;i the time that the ith class

k job spends in the system, the cumulative delay cost up to time t 2 [0; n] is

J(t) =
dX

k=1

Ak(t)X
i=1

Ck(�k;i): (3)

Introduce any continuous-time process �k(�) with �k(Uk(i)) = �k;i so that �k(t) represents the

delay of the job that arrived at time t. Then J can be written as

J =
X
k

Z
Ck(�k(t)) dAk(t): (4)

In order to proceed we need a representation of a scheduling policy (the decision variable)

and a relation that expresses the delay process � in terms of the primitives. We adapt

the processing network model with dynamic control capability introduced by Harrison [10]

as follows. A scheduling policy is expressed as a vector allocation process T , where Tk(t)

represents the total amount of time during [0; t] that the server allocates to class k. Let

Nk(t) denote the total number of class k jobs present in the system at time t, and de�ne the

vector headcount process N in the obvious way. We have the fundamental ow identity

Nk(t) = Ak(t)� Sk(Tk(t)): (5)

The server may not have enough work to keep him busy at all times, and may conceivably be

idle when there is work to do. However, if preemption is allowed, it is optimal to enable the
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server whenever there is work waiting and not to insert scheduled idleness. Such a scheduling

policy is called work conserving1. Due to the rather crude nature of the asymptotic analysis

of sections 3 and 4, the assumptions made regarding preemption do not a�ect the scheduling

policy that will emerge from the analysis. De�ne I(t) as the cumulative server idleness up

to time t:

I(t) = t�
X
k

Tk(t): (6)

We assume that the arrival times and the queues are observable, as is usually the case in

practice. Thus, the decision maker can base the allocation decision at time t only on the

observed evolution of (A;N) up to t. According to (5), this means that only the service

times of the processed jobs are observable, not those of the waiting jobs. The requirement

that T be non-anticipating with respect to (A;N) and its interpretation as a cumulative

time allocation translate into the following conditions. Formally, a policy T is feasible if

F1. T (0) = 0 and fT (t); t 2 (0; n]g is adapted to the �ltration fFt; t 2 (0; n]g where

Ft = �f(A(s); N(s)); 0 � s < tg.

F2. T is continuous and non-decreasing.

F3. I is non-decreasing.

F4. N � 0.

De�ne the workload input process L and the workload process W via

Lk(t) = Vk(Ak(t)); (7)

Wk(t) = Lk(t)� Tk(t): (8)

Lk(t) represents the total amount of work (expressed in units of time) requested by all the

class k jobs that have arrived by time t, and Wk(t) is the amount of work requested by

those class k jobs that are in the system at time t. It follows directly that the total work

input L+ =
P

k Lk and total workload W+ =
P

kWk are independent of the work conserving

scheduling policies. Because L is exogenous, one could also use W instead of T to express

the scheduling policy.

1In general, a policy is said to be work conserving if it does not a�ect the arrival or service process, and

if service is provided whenever the system is not empty.
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In order to derive the system equation for the delay process � we �rst show that serving

each class in �rst-in �rst-out (FIFO) order is optimal.

Proposition 1 FIFO sequencing within a class is optimal in the expected2 sense, EJFIFO �

EJnot�FIFO, if class service times are homogeneous and not observable and if the class delay

cost function is non-decreasing convex.

(All proofs are given in the appendix.) Notice that for strictly convex delay functions, FIFO

is the unique optimal service order. It follows from the de�nition of T and W that, if each

class is FIFO sequenced, the delay process is given by

�k(t) = inffs 2 RI + :Wk(t) � Tk(t+ s)� Tk(t)g; (9)

or

Wk(t) = Tk(t+ �k(t))� Tk(t): (10)

Given the generality of the model that does not make any assumptions regarding the ar-

rival and service processes one cannot possibly hope for an exact solution to this problem.

Therefore, we will focus on policies that are asymptotically optimal as \the time horizon

n becomes large compared to the job delays and the system operates near full capacity".

Before we can rephrase this loosely stated condition in precise terms we will need some more

analysis. Considering heavily loaded systems is not very restrictive given that the impact of

scheduling is greatest when a system is operating close to its capacity constraint.

The methodology that we use to study processing systems operating near full capacity

is heavy tra�c analysis. One considers a sequence of systems similar to the one described

in this section. The nth system has a time horizon of n, and as n gets large, utilization

approaches 1 and the system is operating near full capacity. Because in the limit the jumps

of the arrival and service process become negligible, a considerable simpli�cation occurs and

the problem becomes analytically tractable.

Nowhere have we made an assumption regarding uncertainty in the arrival and service

process primitives. The method is applicable to both deterministic and stochastic settings. In

the next section we will analyze our system under heavy tra�c without needing any reference

to a stochastic environment which allows a more accessible, less technical exposition. We

call this the deterministic system, but one could equally well describe it as a sample path

2Section 4 shows that FIFO is also asymptotically optimal in the stochastic sense.
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analysis or a study of a speci�c realization of the stochastic system. Section 4 shows how

this analysis ties into a stochastic setting.

We will use the following notation. C denotes the space of continuous real functions on

[0; 1], C1 is the space of real functions on [0; 1] that have continuous �rst derivatives, and

D is the space of simply discontinuous functions on [0; 1]. The functions may be scalar

or d-dimensional vector functions, which will be clear from the context. Subscripts denote

components of a vector. We write xn ! x and say that \xn converges" to mean that the

functions xn 2 D converge to some function x 2 D under the uniform norm

kxk = sup
0�t�1

jx(t)j; (11)

which is interpreted as suptmaxk jxk(t)j for a vector function. Slightly abusing the notation,

we denote a vector function with components xk(t)yk(t); xk(t)=yk(t), and xk(yk(t)) at time t

by xy; x=y, and x � y respectively. Finally, the identity function is denoted by e; e(t) = t.

3 Deterministic Analysis

This section describes the heavy tra�c analysis of our problem. Consider a sequence of

systems, indexed by n 2 NI , similar to the one described in the previous section. The n-

th system has an arrival process An, service process Sn, and delay cost function Cn as its

primitives, and operates during [0; n]. The purpose is to derive insight into the e�ect of a

policy on the dynamics of a system that is operating near full capacity. The primitives and

policies (T n) can be di�erent from system to system, but to yield meaningful insights, they

cannot be completely unrelated. The requirement to operate near full capacity relates the

arrival process and service process within one system and among systems. We will also relate

the cost functions of di�erent systems. Finally, we make the problem analytically tractable

by imposing convergence assumptions on the arrival and service processes. The analysis

makes no reference to a stochastic environment and simpli�es to an exercise in real analysis.

However, the results will be applicable to both deterministic and stochastic settings.

3.1 Analysis

Convergence assumptions on the arrival and service processes are conveniently stated after a

time transform to the common domain t 2 [0; 1], similar to familiar functional central limit
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theorems (FCLTs) of stochastic systems. All interarrival and service times are assumed �nite

in all systems so that the arrival and service processes of the n-th system are of order n. We

will show in Proposition 2 that the decision variable T n is (asymptotically) determined to a

�rst order by the primitivesAn and Sn. Thus a second order analysis is necessary to study a

speci�c control policy. The FCLT for renewal processes states that the second order term is

of order n1=2. And since the unit-size discontinuities of An and Sn are of order 1 = o(n1=2),

it is natural to decompose An and Sn into a sum of continuous functions �An; �Sn; ~An; ~Sn in C

so that for t 2 [0; 1] :

An(nt) = n �An(t) + n1=2 ~An(t) + o(n1=2); (12)

Sn(nt) = n �Sn(t) + n1=2 ~Sn(t) + o(n1=2): (13)

One may think of the �rst and second order terms as the long-term trend and the variation

around this trend, respectively. BecauseAn and Sn are non-decreasing, we can always require

same of their continuous �rst order terms �An and �Sn so that the inverse functions �An�1 and

�Sn�1 exist. Introduce the following functions

Rn
k =

�Sn�1

k � �An
k and Rn

+ =
X
k

Rn
k : (14)

We will show that Rn
k is the �rst order approximation of the work input process Ln, so that

the n-th system operates near full capacity if Rn
+ is close to the identity function.

Assumption 1 (Main Convergence) There exist functions ~A�; ~S�; ~c� 2 C and increasing

functions �A�; �S� 2 C1, such that:

�An ! �A� �Sn ! �S�; (15)

~An ! ~A� ~Sn ! ~S�; (16)

n1=2(Rn
+ � e)! ~c�: (17)

Equation (17) is the heavy tra�c condition stating that for large n, the system is operating

near full capacity. Denote the positive �rst derivatives by

�A�0 = �; (18)

�S�
0

= �; (19)

R�0

k = �k = �k=�k; (20)
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which are all bounded on [0; 1] because they are continuous. �; � and � represent the (asymp-

totic) scaled instantaneous arrival rate, service rate, and tra�c intensity of class k. The main

assumptions imply convergence relations for all other system variables:

Proposition 2 Given Assumption 1, we have that for any scheduling policy

Nn(nt) = n1=2 ~Nn(t) + o(n1=2); (21)

T n(nt) = n �T n(t) + n1=2 ~T n(t) + o(n1=2); (22)

Un(nt) = n �Un(t) + n1=2 ~Un(t) + o(n1=2); (23)

V n(nt) = n�V n(t) + n1=2 ~V n(t) + o(n1=2); (24)

W n(nt) = n1=2 ~W n(t) + o(n1=2); (25)

and for FIFO sequencing in each class

�n(nt) = n1=2~�n(t) + o(n1=2); (26)

with the following convergence relationships

�T n ! R� 2 C1; (27)

�Un ! �U� 2 C1; (28)

�V n ! �V � 2 C1; (29)

~Un ! ~U� 2 C; (30)

~V n ! ~V � 2 C; (31)

~W n
+ ! ~W �

+ 2 C; (32)

n�1=2 sup
1�i�An(n�)

unk;i ! 0; (33)

n�1=2 sup
1�i�Sn(n�)

vnk;i ! 0; (34)

~W n converges () ~T n converges () ~Nn converges () ~�n converges; (35)

and where lim supn k
~Nnk; lim supn k

~T nk; lim supn k
~W nk; lim supn k~�

nk are all bounded.

Since counting processes and partial sums processes are almost inverse processes, the conver-

gence relationships for Un and V n are not surprising. Equation (27) shows that the decision

variable T n is asymptotically known to a �rst order as argued intuitively by Harrison [10].
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Also, the scaled total workload ~W n
+ converges, but that need not be true for the class workload

process ~W n. Moreover, the convergence of the class workload processes implies the conver-

gence of the second order policy process ~T n, the headcount process ~Nn, and the delay process

~�n. Non-converging policies are not an esoteric mathematical artifact; they can represent

scheduling policies that are widely used in practice. For example, polling systems where

the di�erent classes are served until exhaustion in a speci�c order have non-converging class

workload processes as discussed by Co�man, Reiman and Puhalskii [4]. The underlying rea-

son is that, in heavy tra�c, the class workload process lives on a smaller time scale than the

total workload process. Unlike other researchers [13, 14, 17, 19, 20, 21, 22, 36, 37, 38, 39, 40]

who de�ne the asymptotic policy a priori as an RCLL function (that is, an element of D),

we study a broader class of control policies that includes nonconvergent policies.

The Law of Large Numbers applied to the workload process yields that class workloads

are well approximated by the product of class headcount and asymptotic service requirement:

Proposition 3 (LLN) Given Assumption 1,

�k ~W
n
k �

~Nn
k ! 0: (36)

Little's Law, relating time-averages of the delay, arrival and headcount process, generalizes:

Proposition 4 (Little's Law) Given Assumption 1, and a; b 2 [0; 1] where a < b,

n�3=2

�An
k(b)�

�An
k(a)

Z nb

na
�nk dA

n
k �

1
�An
k(b)�

�An
k(a)

Z b

a

~Nn
k (t)dt! 0: (37)

Delay cost functions in a system are de�ned in terms of the natural time scale of throughput

times. Because the n-th system has throughput times of order n1=2, its delay cost functions

will assign a moderate cost to delays of this order. To investigate the asymptotic behavior

of costs, we therefore assume the following:

Assumption 2 (Cost Convergence) The (vector) cost functions Cn in di�erent systems

scale to a non-decreasing convex function C� as

Cn(n1=2�)! C�(�): (38)

Therefore, the total cumulative cost Jn(nt) is of order n, and we de�ne the scaled cumu-

lative cost ~Jn as

~Jn(t) = n�1Jn(nt) =
X
k

Z nt

0
Cn
k (�

n
k )n

�1 dAn
k for t 2 [0; 1]: (39)
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3.2 Converging Policies

If the sequence of policies ~T n is convergent, then so are ~W n; ~Nn and ~�n, according to Proposi-

tion 2, and we denote their corresponding limiting functions by ~W �; ~N� and ~� �. Propositions

3 and 4 directly yield the following:

Proposition 5 Given Assumptions 1 & 2, if the sequence of policies ~T n converges, then

�~� � = ~N�; (40)

� ~W � = ~N�; (41)

and the corresponding sequence of cumulative cost functions converges:

~Jn !
X
k

Z
�k(t)C

�
k(~�

�
k (t))dt: (42)

The convergence in (42) follows directly from the Generalized Lebesgue Convergence Theo-

rem [28, p. 270] because ~� � is bounded. Thus, if the policies converge, there exists a limiting

system in which, according to Proposition 5, throughput times are proportional to workloads

(i.e., Little's Law holds at each point in time). However, an exclusive analysis of the limiting

system precludes the consideration of non-converging control sequences which may have a

superior performance and can be important in practice.

4 Asymptotic Optimality

In this section, we �rst present a closed-form, asymptotic lower bound on the scaled cumu-

lative cost function of any feasible policy, converging or not. Then we introduce a family of

policies whose asymptotic cumulative cost function attains the lower bound for all times t

simultaneously. These policies, which include the Generalized c � Rule, are called \asymp-

totically optimal" and we give an expression for their associated delay process. Finally, we

show how these results extent to stochastic systems.

4.1 An Asymptotic Lower Bound on the Cost ~Jn

De�ne the mapping g : D ! Dd such that y ! g � y where g � y(t) is the solution of the

minimization problem

g � y(t) = arg min
x2


dX
k=1

�k(t)C
�
k

 
xk

�k(t)

!
; (43)
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where 
 = fx 2 Rd
+ :

P
k xk = y(t)g. It will be shown later that the mapping g applied to

the total workload process yields the optimal class workloads, ~W � = g � ~W �
+. Because the

objective function is convex on the convex set 
, the solution set is also convex. If C� is

convex increasing, the solution is unique and g is continuous at any continuous y. (If C�

is non-decreasing convex, there can be an uncountable set of solutions, but we can pick a

particular solution such that g is continuous). We can now show the following lower bound.

Proposition 6 Given Assumptions 1 & 2, the asymptotic cost is bounded from below, that is,

for any sequence of feasible policies, the associated sequence of cumulative costs f ~Jn : n 2 NI g

satis�es for each t 2 [0; 1]

lim inf
n!1

~Jn(t) � ~J�(t); (44)

where

~J� =
X
k

Z
�k(t)C

�
k

 
[g � ~W �

+]k(t)

�k(t)

!
dt: (45)

Notice that the lower bound depends only on the instantaneous rates � and � and variability,

reected by the second order \tilde processes", a�ects ~J� only through the total workload

process. The following section will show that the bound is tight.

4.2 Asymptotically Optimal Scheduling Rules

From the expression of the lower bound ~J� and Proposition 5, it follows that any sequence of

policies that controls the class workloads such that ~W n ! g � ~W �
+ is asymptotically optimal.

Thus, if we approximate Wk by ��1k Nk (Proposition 3), then \serving to hug the optimal

workload curve" as shown in Figure 3 is a feasible and asymptotically optimal policy.

Another way to attain the lower bound is to control according to the �rst order optimality

conditions of the minimization problem (43) if C� is smooth, i.e., C� 2 C1. Denoting

the derivative (gradient) of C� by c�, the marginal cost function of C�, the Kuhn-Tucker

optimality conditions are su�cient because the objective function is convex, and for each

�xed t 2 [0; 1], the solution x� = g � y(t) solves

�k(t)c
�
k

 
x�k
�k(t)

!
� �k = �0 (46)

�kx
�
k = 0 (47)X

k

x�k = y(t) (48)
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Figure 3: \Hug-the-curve" Scheduling

where the Lagrange multipliers �k � 0 and �0 2 RI , and 1 � k � d. In the general case,

there can be boundary solutions, i.e., x� belongs to the boundary
Sd
k=1fxk = 0g of the set


, or an uncountable set of solutions. To keep the exposition simple, we will assume that

the solution x� is unique and interior for all t 2 [0; 1], which is guaranteed by the following

regularity assumption:

Assumption 3 (Cost Regularity) The (vector) cost function C� is strictly convex, smooth

(C� 2 C1), and has an interior solution to the minimization problem (43).

Under Assumption 3, the su�cient conditions reduce to

�k(t)c
�
k

 
x�k
�k(t)

!
= �0 (49)

X
k

x�k = y(t): (50)

Proposition 7 Given Assumptions 1, 2 & 3, the sequence of feasible policies f ~T n : n 2 NI g

such that

max
1�k;l�d

�kc�k
 
~W n
k

�k

!
� �lc

�
l

 
~W n
l

�l

!! 0; (51)

where ~W n = ~Ln� ~T n, is asymptotically optimal, that is, the associated sequence of cumulative

costs f ~Jn : n 2 NI g attains the lower bound

~Jn ! ~J�; (52)
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and the associated sequence of delay processes f~�n : n 2 NI g satis�es

~�n ! ~� � =
g � ~W �

+

�
: (53)

The proof of the proposition shows that this sequence of policies is necessarily convergent so

that according to proposition 5 the asymptotic optimal scheduling rule implies that

max
1�k;l�d

k�kc
�
k(~�

n
k ) � �lc

�
l (~�

n
l )k ! 0: (54)

Serving the class k with highest �kc
�
k(~�

n
k ) increases the �lc

�
l (~�

n
l ) thereby lowering the maxi-

mum di�erence among the classes. Because the di�erence between the age of the oldest job

and its delay becomes negligible for large n, the Generalized c � Rule implements precisely

an asymptotic optimal scheduling policy. Since we have shown that both the Generalized

c � Rule and \hug-the-curve" scheduling are asymptotically optimal, they are essentially

equivalent. The former provides a concise mathematical representation for any number d

of classes, while the latter has an attractive pictorial form, especially if d = 2 (although it

carries over to higher dimensions).

Recall that we have assumed that the minimization problem (43) has a unique interior

solution for all t. In general, there can be boundary solutions, such that for some i 2

f1; � � � ; dg, the solution x� = g � y(t) has x�i = 0. This means that we should schedule

these classes such that ~W n
i ! 0, and the remaining classes k; l according to (51). ~W n

i ! 0

implies that \boundary" classes i should be given priority above \interior" classes k; l. Under

heavy tra�c conditions, it is irrelevant how the ranking is done among the boundary classes

because their queue lengths will be negligible compared to those of the interior classes.

Therefore, serving them according to the Generalized c � Rule is also asymptotically optimal

and scheduling the highest cost generating class �rst remains intuitively attractive. Finally,

because �ic
�
i (0) > �kc

�
k(x

�
k=�k) for any boundary class i and interior class k, serving all

classes according to the Generalized c � Rule is an asymptotic optimal strategy (regardless

whether the optimal point is interior or on the boundary).

4.3 Stochastic Systems

Now embed the analysis in a probabilistic structure. We are given a sequence of stochastic

systems de�ned on a corresponding sequence of probability spaces f(
n;Fn; P n) : n 2 NI g.
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We write Xn =) X to denote weak convergence of random elements Xn 2 D to X 2 D

in the space D under the Skorohod topology. All limiting functions X in this paper will be

continuous, in which case convergence under the Skorohod metric is equivalent to uniform

convergence (i.e., convergence under the norm k�k of (11)) according to Glynn [8, Proposition

4, p. 149]. In that case, invoking the Skorohod Representation theorem [8], the above analysis

holds for almost all sample paths in the Skorohod space. Relating these results to the original

system sequence immediately yields the following proposition.

Proposition 8 Given Assumptions 2 & 3, if there exist processes ~A�; ~S�; ~c� with a.s. con-

tinuous sample paths on [0; 1] and processes �A�; �S� with a.s. continuously di�erentiable

increasing sample paths on [0; 1], such that:�
�An; ~An; �Sn; ~Sn; n1=2(Rn

+ � e)
�
=)

�
�A�; ~A�; �S�; ~S�; ~c�

�
; (55)

then the asymptotic cost is stochastically bounded from below, that is, for any feasible policy,

the associated sequence of cumulative costs f ~Jn : n 2 NI g satis�es for each t 2 [0; 1]

lim inf
n!1

~Jn(t) �st
~J�(t); (56)

and the sequence of feasible policies f ~T n : n 2 NI g such that

max
1�k;l�d

�kc�k
 
~W n
k

�k

!
� �lc

�
l

 
~W n
l

�l

! =) 0; (57)

where ~W n = ~Ln� ~T n, is asymptotically optimal in the stochastic sense, that is, the associated

sequence of cumulative costs f ~Jn : n 2 NI g attains the lower bound

~Jn =) ~J�; (58)

and the associated sequence of delay process f~�n : n 2 NI g satis�es

~�n =) ~� � =
g � ~W �

+

�
: (59)

Proposition 8 applies directly to multiclass GI/G/1 systems with independent renewal arrival

and service processes. Similar to \classical" heavy tra�c scaling, set �An(t) = �t+n�1=2~c�(t),

~An(t) = n�1=2(An(nt) � �nt) � ~c�(t), and require ~c�(t) = t for a real constant vector .

The functional strong law and central limit theorem for renewal processes state that �A� is

the deterministic linear function �e and ~A� is a Brownian motion with drift , likewise for

the service process, so that the assumptions of Proposition 8 are satis�ed. However, the

proposition is much more general and also applies to non-stationary systems with dependent

arrival and service processes (that satisfy the joint FCLT in (55)).
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5 Extensions and Discussion

If the system is not empty at time t = 0, the analysis needs to be extended. The initial data

add a fourth primitive to the model: for each class k, the number of jobs present at time

0 together with their age and service times: f�Uk(i); vk;i : i = �1; � � � ;�Nk(0)g. The jobs

present at time t = 0 represent an additional delay cost Jini:

Jini =
dX

k=1

Nk(0)X
i=1

Ck(�k;�i): (60)

Assumption 1 is extended with: There exist a vector ~W �(0) 2 RI d
+ such that for the initial

data and k = 1; � � � ; d:

n�1=2
Nn

k
(0)X

i=1

vnk;�i ! ~W �
k (0); (61)

n�1
Nn

k
(0)X

i=1

Cn
k (n

1=2 + Un
k (�i)) ! 0: (62)

The last assumption guarantees that the additional delay cost Jn
ini becomes negligible com-

pared to the cumulative delay cost Jn for large n. The only impact of the initial conditions

is in providing an initial workload condition ~W �(0) which inuences the lower bound ~J�

through the initial total workload ~W �
+(0).

The Generalized c � Rule also extends to mildly time-dependent delay functions. As long

as the delay functions do not vary substantially over a delay period (that is, a time period

of order n1=2 for a system with time horizon n), the analysis still applies.

In addition, the Generalized c � Rule is asymptotically optimal for a multiclass system

with multiple parallel servers with equal capabilities. In heavy tra�c, the multiserver sim-

pli�es to a single server with service capacity equal to the sum of the parallel servers, and

the analysis still applies.

The Generalized c � Rule is a myopic or greedy rule. Assume the system has Poisson

arrival and service processes. If one serves a class k job with age a during [t; t + �], the

probability of its service completion during that interval is �k� + o(�). The reduction in

cost would be Ck(a + �)� Ck(a) = ck(a)� + o(�), so that serving class k would decrease

the total expected delay cost by �kck(a)�
2 + o(�2). A greedy minimization approach is to

serve the job with highest index �kck(a).
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Similar to the c � Rule, the Generalized c � Rule requires very little input data: only

service rates and age. Interestingly, no arrival data nor higher moments of the service

distribution are needed. In this sense it resembles scheduling rules derived from uid models

such as discussed by Chen and Yao [3]. On the other hand, as in di�usion models, variability

inuence shows up in the expression of the optimal total cumulative cost and associated

throughput time process.

The fact that the Generalized c � Rule applies to non-stationary and �nite horizon settings

makes the model particularly relevant to current economic environments where notions such

as in�nite time horizon, stationarity, and long-run average costs become almost irrelevant.

Chen and Yao [3] argue that it is only natural (as well as practical) in that case to follow a

policy generated by a myopic procedure, which is reminiscent of a rolling horizon method.

The Generalized c � Rule is also pertinent in the presence of due-dates where typically the

marginal delay cost strongly increases past the quoted due-date (Figure 2). Our model could

be used for instance to study the e�ects of quoting di�erent due-dates for di�erent \grades

of service" where one would o�er a product at multiple prices representing a promised faster

due-date.

Another factor that should be considered in relation to the Generalized c � Rule is the

empirical estimation/quanti�cation of the delay costs. Also, the Generalized c � Rule is

shown to be asymptotically optimal. From a theoretical point of view, it would be interesting

to investigate how the rule performs when operating with plenty of excess capacity, although

in practice scheduling matters most when resources are scarce and constrained. Therefore,

the fact that the Generalized c � Rule is \only" asymptotically optimal should not diminish

its applicability.
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A Proofs

A.1 Proposition 1

Proof: Assume class k is not ordered FIFO at time t. Then there is at least one class k job (say

the j-th) that arrived at time Uk(j) � t which is scheduled before the i-th class-k job which arrived

at Uk(i) < Uk(j). We will show that interchanging these two jobs cannot increase the expected

cumulative cost E(J(n)� J(t)).

Interchanging the two jobs can only a�ect the delays of the two jobs and of those jobs currently

scheduled between them. In addition, if class k service times are homogeneous and not observable,

we cannot distinguish a priori between the service times of i and j, and interchanging the two jobs

can therefore not change the a priori estimate of (and thus the expected) delay cost of those jobs

currently scheduled between them. Denote the change in cumulative cost due to the interchange by

�J(n) = Jchanged(n)� Joriginal(n). Also, denote the total service requirements of all jobs originally

scheduled before job j and all jobs in between j and i by vbefore and vbetween respectively. Then

E�J(n) = E
h
Ck(v

before+ t� Uk(i) + vk;i) + Ck(v
before+ vk;i + vbetween+ t � Uk(j) + vk;j)

�Ck(v
before+ t� Uk(j) + vk;j)� Ck(v

before+ vk;j + vbetween+ t� Uk(i) + vk;i)
i

= E
h
Ck(v

before+ t� Uk(i) + vk;l) + Ck(v
before+ vk;m + vbetween+ t � Uk(j) + vk;l)

�Ck(v
before+ t� Uk(j) + vk;l)� Ck(v

before+ vk;m + vbetween+ t � Uk(i) + vk;l)
i
:

Because Ck is non-decreasing convex on RI +, we have that for any x; y; z 2 RI + with x 6= y:

Ck(x)� Ck(y)

x� y
�

Ck(x+ z)� Ck(y + z)

x� y
:

Set x = vbefore+ t�Uk(i)+vk;l; y = vbefore+ t�Uk(j)+vk;l and z = vbetween+vk;m. By assumption,

x � y > 0 such that E�J(n) � 0. This remains true for any other time t while i and j are in the

system. Therefore, EJFIFO � EJnot�FIFO.

A.2 Proposition 2

Proof: From Assumption 1 that �A� ( �S�) is increasing, we can infer that the associated time-scaled

arrival (service) epochs fn�1Un(i) : i 2 NI g become dense in [0; 1], and thus

n�1 sup
1�i�An(n)

unk;i ! 0; (63)

n�1 sup
1�i�Sn(n)

vnk;i ! 0: (64)
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Therefore, using t � sup1�i�An(t) u
n
k;i < Un

k (A
n
k (t)) � t (and likewise for V and S), we have that a

counting process and its associated partial sums process are (asymptotically) inverse processes:

n�1Un
�An

� n e ! e; (65)

n�1V n
� Sn

� n e ! e: (66)

Thus, the convergence main assumption imply3 the expansions (23) and (24) where the limits can

be expressed in terms of the limits of the associated counting processes

�Un
! �U� = �A��1 ;

�V n
! �V � = �S�

�1

;

~Un
! ~U� = �

~A�
� �A��1

� � �A��1
;

~V n
! ~V � = �

~S� � �S�
�1

� � �S�
�1

:

Notice that �U�; �V � 2 C1 and ~U�; ~V � 2 C. Moreover, we can choose

�Un = �An�1 and �V n = �Sn�1 : (67)

From (7), it follows that Ln has the following expansion:

Ln(nt) = n�Ln(t) + n1=2~Ln(t) + o(n1=2); (68)

where (using �V �0(�) = 1=�( �S�
�1

(�) 2 C)

�Ln = Rn
! R�; (69)

~Ln
! ~L� =

�
�V �0

� �A�
�
~A� + ~V �

� �A�: (70)

From (17) and (69) it follows that the total workload netow process Xn = Ln
+� e is of order n1=2:

Xn(nt) = n1=2 ~Xn(t) + o(n1=2); (71)

where

~Xn = ~Ln
+ + n1=2(Rn

+ � e)! ~X� = ~L�+ + ~c�: (72)

From the continuity of the reection mapping � (cf., Harrison [11]) it follows that the total workload

process Wn
+ = �(Xn) has expansion

Wn
+ = n1=2 ~Wn

+ + o(n1=2); (73)

3It follows directly that n�1Un
�nA� � e! e and thus Un(n�) = n �Un(�) + o(n), where �Un

! �U� = �A�
�1

.

Because �A�
�1

2 C
1, we can choose a continuously di�erentiable function for �Un (the expansions are only

unique in the limit), from which the bounded second order term follows directly by Taylor expansion.
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where

~Wn
+ = �( ~Xn)! ~W �

+ = �
�
~L�+ + ~c�

�
: (74)

The latter implies that the (class) workload process Wn is also of order n1=2 such that we have

(25) and lim supn k
~Wn

k is bounded by k ~W �
+k which is �nite (because ~W �

+ 2 C) but ~Wn need not

converge! From (8), (68) and (25), it follows that Tn has expansion (22) where

�Tn
! R�; (75)

~Tn + ~Wn
! ~L�: (76)

Thus, like lim sup ~Wn, the lim sup ~Tn is bounded, but ~Tn need not necessarily converge. Moreover,

convergence of ~Tn is equivalent to convergence of ~Wn. Given the expansions of An; Sn;Wn and Tn,

using (5) and (10), we have that both Nn and �n (under class FIFO) are of order n1=2 as stated

in (21) and (26). Using the convergence and di�erentiability assumption of �S� together with the

boundedness of lim sup ~Tn,

~Nn = ~An
� ~Sn

�Rn
� (� �Rn) ~Tn: (77)

Also, from (27), (26) and Assumption 1s, it follows that

�Tn
k (t + n�1�nk (nt))�

�Tn
k (t) = �k(t)n

�1�nk (nt) + o(n�1=2); (78)

so that (10) yields

~Wn = � ~�n + ~Tn
k (t+ n�1�nk (nt))�

~Tn
k (t): (79)

Again, lim sup ~Nn and lim sup ~�n are bounded but ~Nn and ~�n need not necessarily converge. How-

ever, their convergence is linked, yielding (35).

To show (33) and (34) we need the following lemma (which is a generalization of Lemma 3.3.c.

in the seminal work of Iglehart and Whitt [16]).

Lemma 1 If �U�
k ;

~U�
k 2 C, then n�1=2 sup1�i�An(n�) u

n
k;i ! 0.

Proof: From �Un
k ! �U�

k , it follows that n
�1=2(Un

k � n � n �U�
k ) !

~U�
k . De�ne the maximum jump

function h : D ! RI + : x! h(x) = supt2[0;1] j x(t)� x(t�) j. Because h is continuous at any x 2 C,

h(n�1=2(Un
k �n�n

�U�
k ))! h( ~U�

k ). Because
�U�
k and

~U�
k are continuous, this yields n

�1=2h(Un
k �n)! 0

which �nishes the proof.

The assumptions of this lemma are satis�ed for both Un and V n, which concludes the proof of the

proposition.
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A.3 Proposition 3

Proof: Denote by v
n(0)
k the amount of service, if any, already given by time t to the oldest class

k job. We have that

Wn
k (t) = V n

k (A
n
k(t))� V n

k (A
n
k (t)�Nn

k (t))� v
n(0)
k (80)

= n �V n
k (n

�1An
k(t))� n �V n

k (n
�1An

k(t)� n�1Nn
k (t)) + o(Nn

k (t))� v
n(0)
k (81)

= �V �0

k (n�1An
k(t))N

n
k (t) + o(Nn

k (t))� v
n(0)
k ; (82)

and thus

~Wn
k (t) =

�V �0

k ( �An
k(t))

~Nn
k (t) + o( ~Nn

k (t))� n�1=2v
n(0)
k : (83)

Thus, because lim k �V �0

k � �An
kk <1,

k ~Wn
k � ( �V �0

k � �An
k )

~Nn
k k � o(k ~Nn

k k) + n�1=2 sup
1�i�An

k
(n)

vnk;i: (84)

Using Proposition 2 and noting that equation (17) implies that �V �0

k � �An���1k ! 0 ends the proof.

A.4 Proposition 4

Proof: De�ne Cn
a ; C

n
c ; C

n
d as follows (recall that �nk;i represents the throughput time of the i-th

class k job in the n-th system)

n3=2( �An
k(b)�

�An
k (a))C

n
a =

An

k
(nb)X

i=An

k
(na)

�nk;i

n3=2( �An
k(b)�

�An
k (a))C

n
c =

Z nb

na
Nn

k (t)dt

n3=2( �An
k(b)�

�An
k (a))C

n
d =

An

k
(nb)�Nn

k
(nb)X

i=An

k
(na)

�nk;i:

The quantities on the right hand side may be thought of as three di�erent charging schemes where

jobs pay one dollar per unit time spent in the system. Cn
a charges the entire job cost at the job's

arrival, Cn
d at the job's departure, and Cn

c charges continuously. It is clear that

Cn
d � Cn

c � Cn
a : (85)
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Further,

Cn
a � Cn

d =
n�3=2

�An
k (b)�

�An
k (a)

An

k
(nb)X

i=An

k
(nb)�Nn

k
(nb)+1

�nk;i

�
n�3=2

�An
k (b)�

�An
k (a)

Nn
k (b) max

An

k
(nb)�Nn

k
(nb)+1�i�An

k
(nb)

�nk;i

�
n�1=2

�An
k (b)�

�An
k (a)

~Nn
k (b)k~�

n
k k+ o(n�1=2);

and using Proposition 2,

lim
n!1

Cn
a � Cn

d = 0: (86)

Since

n�3=2
Z nb

na
Nn

k (t)dt =

Z b

a

~Nn
k (t)dt+ o(1); (87)

taking lim in (85) ends the proof.

A.5 Proposition 6, the Lower Bound

Proof: Fix � > 0 and, for any n 2 NI , consider the sequence of stopping times of ~W �
+, fti : i 2 NI g,

de�ned as follows:

t1 = min
n
1; inf

n
0 < t � 1 :

��� ~W �
+(t)� b ~W �

+(0)=�c�
��� � �

oo
(88)

ti+1 = min
n
1; inf

n
ti < t � 1 :

��� ~W �
+(t)�

~W �
+(ti)

��� � �
oo

: (89)

Thus ti+1 is the �rst time ~W �
+ changes by � starting from ~W �

+(ti) at time ti. Because ~W �
+ is

continuous, supi(ti+1 � ti)! 0 as � ! 0, so that supi(ti+1 � ti) = O(�). Using Jensen's Inequality

for convex functions, we have that

~Jn =
X
k

X
i

Z nti+1

nti

Cn
k (�

n
k )n

�1dAn
k (90)

�

X
k

X
i

n�1 [An
k(ti+1)� An

k(ti)]C
n
k

�
[An

k (ti+1)� An
k(ti)]

�1
Z nti+1

nti

�nk dA
n
k

�
: (91)

Using Assumption 1 that n�1An(n�)! �A�, with continuous �rst derivative �A�0 = �, we have that

n�1 [An(ti+1)� An(ti)] = �A�(ti+1)� �A�(ti) + on(1) (92)

= �(ti)(ti+1 � ti) + o(�) + on(1); (93)
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where on(1)! 0 as n!1, and both bounds on(1) and o(�) are uniform over [0; 1]. Thus,

~Jn �
X
k

X
i

[�(ti)(ti+1 � ti) + o(�) + on(1)]C
n
k

�
n�1 [�(ti)(ti+1 � ti) + o(�) + on(1)]

�1
Z nti+1

nti

�nk dA
n
k

�
:

Evaluate the argument of Cn
k as follows,

n�1 [�(ti)(ti+1 � ti) + o(�) + on(1)]
�1 R nti+1

nti
�nk dA

n
k

= n�1
h
(�(ti)(ti+1 � ti))

�1 + o(�) + on(1)
iR nti+1

nti
�nk dA

n
k [(x+�x)�1 = x�1 ��x+ o(�x)]

= n1=2
�
[�(ti)(ti+1 � ti)]

�1 R ti+1
ti

~Nn
k dt + o(�) + on(1)

�
[Proposition 4 + ~Nn is bounded]

= n1=2
�
[�(ti)(ti+1 � ti)]

�1 R ti+1
ti

�k ~W
n
k dt + o(�) + on(1)

�
[Proposition 3]

= n1=2
�
[�k(ti) +O(�)] [�(ti)(ti+1 � ti)]

�1 R ti+1
ti

~Wn
k dt + o(�) + on(1)

�
[� is continuous]

= n1=2
�
[�(ti)(ti+1 � ti)]

�1 R ti+1
ti

~Wn
k dt +O(�) + on(1)

�
[ ~Wn

k is bounded]:

Assumption 2 and the continuity of C�
k on [0; k ~W �

+k] together with the bound lim sup ~Wn
� k ~W �

+k

yield

~Jn �

X
k

X
i

�k(ti)(ti+1 � ti)C
�
k

�
�k(ti)

�1(ti+1 � ti)
�1
Z ti+1

ti

~Wn
k (t)dt

�
+ on(1) + O(�)

�

X
k

X
i

�k(ti)(ti+1 � ti)C
�
k

�
�k(ti)

�1

�
g � (ti+1 � t)�1

Z ti+1

t
dt � ~Wn

+

�
k

(ti)

�
+ on(1) +O(�);

where we invoked the mapping g. Using the fact that ~Wn
+ ! ~W �

+ and the construction of the

stopping times ti, we have that

(ti+1 � ti)
�1
Z ti+1

ti

~Wn
+(t)dt =

~W �
+(ti) +O(�) + on(1): (94)

The continuity of C�
k and g on the bounded interval [0; k ~W �

+k], give a uniform bound

~Jn �
X
k

X
i

�k(ti)(ti+1 � ti)C
�
k

�
�k(ti)

�1
h
g � ~W �

+

i
k
(ti)
�
+O(�) + on(1); (95)

and thus,

lim inf
n!1

~Jn �
X
k

X
i

�k(ti)(ti+1 � ti)C
�
k

�
�k(ti)

�1
h
g � ~W �

+

i
k
(ti)
�
+O(�): (96)

The left hand side is independent of �. Therefore, since � is arbitrary, letting � ! 0 (which im-

plies supi(ti+1�ti)! 0) and invoking the de�nition of the Riemann integral4 completes the proof.

4Since the function Ck(gk( ~W
�

+(�)))=�k(�) is continuous on [0; 1], it is Riemann integrable.
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A.6 Proposition 7

Proof: We will �rst show that ~Tn converges. Fix a class, say j, and de�ne the sequence of scalar

functions fhn : n 2 NI g where hn(t) = �j(t)c
�
j(�j(t)

�1 ~Wn
j (t)). The policy shows that for all � > 0

there exist an integer N such that for all n > N :

���c�k(�k(t)�1 ~Wn
k (t))� ��1k (t)hn(t)

��� < �;

for all t 2 [0; 1] (because �k > 0 is bounded on [0; 1]). According to Assumption 3, c�k is increasing

and continuous. Therefore, its inverse function c�
�1

k is also continuous on [0; 1]. Thus, for all �0 > 0

there exist a (uniform) � > 0 such that if � < � then

����k(t)�1 ~Wn
k (t)� c�

�1

k

�
��1k (t)hn(t)

���� < �0:

Summing over the (maximally d) classes k: ~Wn
+(�)�

X
k

�k(�)c
��1

k

�
hn(�)

�k(�)

� < k�k�0d:

Because the marginal costs are increasing and ~Wn
+ converges, hn and thus also ~Wn converge.

The policy controls the workloads such that ~W � is the solution to the su�cient �rst order conditions

of the minimization problem (43). Thus, ~W � = g � ~W �
+ and proposition 5 shows that ~Jn ! ~J�.
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