Home Assignment 5

Submit Part I by May 25, Part II by June 8.

Ito calculus

Part I: Stochastic integrals

1. For the stochastic integral, prove properties 1–6 (from the lectures) for processes in \mathcal{E} .

2. For processes in \mathcal{L}^2 : If $Y_n \to Y$ in L^2 , show that $E_n \to EY$. Now prove property 1.

3. Show that if $X_n \to X$ in L^2 and $Y_n \to Y$ in L^2 then $X_n + Y_n \to X + Y$ in L^2 . Now prove property 2 in \mathcal{L}^2 .

4. Prove proerty 3 in \mathcal{L}^2 .

Part II: Stochastic Differential Equations

5. Let $X_t = W_t$ and $Y_t = e^{W_t^2}$. Show that (X_t, Y_t) solves the set of stochastic differential equations

$$dX_t = dW_t, \qquad X_0 = 0,$$

$$dY_t = 2X_t Y_t dW_t + (Y_t + 2X_t^2 Y_t) dt, \qquad Y_0 = 1$$

6. Let W^1, \ldots, W^n be independent BMs and denote $W = (W^1, \ldots, W^n)$ (W is called an *n*-dimensional BM). Let

$$R = |W| = \left(\sum_{i=1}^{n} (W^{i})^{2}\right)^{1/2}.$$

Show that R solves the stochastic Bessel equation:

$$dR = \sum_{i} \frac{W^{i}}{R} dW^{i} + \frac{n-1}{2R} dt.$$

7. Let W be an n-dimensional BM, for $n \ge 3$. Write $X = W + x_0$ where the point x_0 lies in the region $U = \{0 < R_1 < |x| < R_2\}$. Calculate explicitly the probability that X will hit the outer sphere $\{|x| = R_2\}$ before hitting the inner sphere $\{|x| = R_1\}$. Hint: Check that $\Phi(x) = |x|^{2-n}$ satisfies $\Delta \Phi = 0$ for $x \ne 0$. Modify Φ to build a function u which equals 0 on the inner sphere and 1 on the outer sphere.