## Martingales

Submit by 18 May

1. Let $\xi_{1}, \xi_{2}, \ldots$ be independent with $E \xi_{i}=0$ and $E \xi_{i}^{2}=\sigma_{i}^{2}$. Let $S_{n}=\sum_{1}^{n} \xi_{i}, s_{n}^{2}=\sum_{1}^{n} \sigma_{i}^{2}$. Show that $S_{n}^{2}-s_{n}^{2}$ is a martingale.
2. Let $X_{n}$ be a submartingale. Show that it is a martingale if and only if $E X_{n}=E X_{0}$ for all $n$.
3. Let $Y_{1}, Y_{2}, \ldots$, be nonnegative i.i.d. random variables with $E Y_{1}=1$. Let $X_{m}=\prod_{n \leq m} Y_{n}$.
(a) Show that $X_{m}$ is a martingale.
(b) Assume that $P\left(Y_{1}=1\right)<1$. Use the positive supermartingale convergence theorem, and an argument by contradiction to show that $X_{m} \rightarrow 0$ a.s.
(c) Use the strong law of large numbers on $\log Y_{n}$ to arrive at the same conclusion.
4. Give an example of a martingale $X_{n}$ with $X_{n} \rightarrow-\infty$ a.s. Hint: Let $X_{n}=\xi_{1}+\ldots+\xi_{n}$, where the $\xi_{i}$ are independent (but not identically distributed) with $E \xi_{i}=0$.
5. Let $X_{n}$ be a martingale with $X_{0}=0$ and $E\left(X_{n}\right)^{2}<\infty$. Using the fact that $\left(X_{n}+c\right)^{2}$ is a submartingale and optimizing over $c$, show that

$$
P\left\{\max _{1 \leq m \leq n} X_{m} \geq \lambda\right\} \leq E X_{n}^{2} /\left(E X_{n}^{2}+\lambda^{2}\right) .
$$

