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1

Chapter 0

What this Book Is, and What It Is Not

The field of communication and computer networks is bustling with activity. One
of the active areas falls under the rubric “performance.” Researchers and devel-
opment engineers tackle systems that are huge, complex and fast; think of the
telephone network in the United States. The resulting models are, for the most
part, discrete-event, continuous time stochastic processes, technically known as
jump Markov processes. The objective is to analyze the behavior of these sys-
tems, with the goal of designing systems that provide better service. “Better” may
mean faster, less prone to error and breakdown, more efficient, or improved by
many other criteria.

Until quite recently, the tools brought to bear on these problems were appro-
priate for small, simple systems. Some of these methods take into account only
average behavior (or perhaps variances). But this is often not enough, as the per-
formance of many systems is limited by events with a small probability of occur-
ring, but with consequences that are severe. Clearly, new tools are needed. Com-
puter simulation is one relatively new tool. But this method, for all its power, is
limited in that it usually does not provide rules of thumb for design, may not give
estimates on the sensitivity of results to various parameters, and can be extremely
costly in terms of both computer time and programming (especially debugging)
time. Analytic methods clearly retain some advantages. This book is about a fairly
new analytic method called large deviations.

Large deviations is a mathematical theory that is very active at present. The
theory deals with rare events, and is asymptotic in nature; it is thus a natural can-
didate for analyzing rare events in large systems. The theory of large deviations
includes a set of techniques for turning hard probability problems that concern a
class of rare events into analytic problems in the calculus of variations. It also
provides a nice qualitative theory for understanding rare events. As an asymp-
totic technique, its effectiveness resides in the relative simplicity with which one
may analyze systems whose size may be growing with the asymptotic parameter,
or whose “conditioning” may be getting worse. The theory is often useful even
when simulation or other numerical techniques become increasingly difficult as
the parameter tends to its limit.

However, the theory is noted for being technically (mathematically) very de-
manding, and solving a problem in the calculus of variations is not typically an en-
gineer’s dream. Although the theory is being increasingly used for analyzing rare
events in large systems, this is done by a relatively small number of researchers.
We believe that the reason for this state of affairs is that the theory is not easily ac-
cessible to non-mathematicians, and the final results seem to require an additional
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translation to engineering lingo. Hence

Large deviations is useful.

Large deviations is formidably technical.

What’s a student to do?

Herein is contained one point of view on what’s to do. We develop the theory
of large deviations from the beginning (independent, identically distributed (i.i.d.)
random variables) through recent results on the theory for processes with bound-
aries, keeping to a very narrow path: continuous-time, discrete-state processes.
By developing only what we need for the applications we present, we try to keep
the theory to a manageable level, both in terms of length and in terms of difficulty.
We make no particular claim to originality of the theory presented herein, except
for the material concerning boundaries, which is the subject of Chapter 8. Most of
the trailblazing work of Freidlin and Wentzell [FW], and of Donsker and Varadhan
[DV1–DV4] goes further than we do. Also, others have subsequently treated the
general theory much more thoroughly; e.g. Ellis [Ell], Wentzell [Wen], Deuschel
and Stroock [DeS], Dembo and Zeitouni [DZ], and the recent work of Dupuis and
Ellis [DE2]. We have, however, formulated a complete, self-contained set of theo-
rems and proofs for jump Markov processes. Since our scope is limited to a class
of relatively simple processes, the theory is much more accessible, and less de-
manding mathematically. To enhance the pedagogical value of this work, we have
attempted to convey as much intuition as we could, and to keep the style friendly.
In addition, we present for the first time a complete theory for processes with a
flat boundary, and for some processes in a random environment. The level of the
book is somewhat uneven, as indicated in the dependence chart Figure 0.1. This is
purposeful—we believe that a neophyte would not want to read the difficult chap-
ters, and that an expert doesn’t want as much hand holding as a beginner.

We believe that our applications are important enough to require no apologies.
As Mark Kac said, “Theorems come and go, but an application is forever.” Our
applications cover large areas of the theory of communication networks: circuit-
switched transmission (Chapter 12), packet transmission (Chapter 13), multiple-
access channels (Chapter 14), and the 1 queue (Chapter 11). We cover as-
pects of parallel computation in a much more spotty fashion: basics of job allo-
cation (Chapter 9), rollback-based simulation (Chapter 10), and assorted priority
queuing models (Chapters 15 and 16) that may be used in performance models of
various computer architectures.

The key word in the phrase “our applications” is “our.” We present only our
own results concerning the applications. We do not synthesize existing theory ex-
cept in our narrow fashion for jump processes. We ignore possible improvements
in order to remain within the realm of those large deviations bounds that we actu-
ally use. For example, Anantharam’s beautiful results on the 1 queue [An]
are certainly relevant to the subjects we address, but his techniques are different.
We do not obtain the best results known for jump Markov processes. It is certainly
arguable whether this is a wise choice. However, we wanted to present a consis-
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tent, fully worked out point of view, avoiding digressions. Furthermore, once a
student has learned the limited range of large deviations techniques we present,
he or she should find it a much simpler matter to read both more abstract and
complete works, and understand more wide-ranging applications. By limiting our
range, we are able to give complete proofs for nearly all the results concerning our
applications. We were also able to present a “bag of tricks” in the calculus of vari-
ations, which allows us to extract concrete information regarding these examples.
We try to remedy some of the narrowness of our point of view in the end notes to
the chapters and in the appendices.

On a less defensive note, we firmly believe that the large deviations of processes
should be taught first for jump Markov processes. Diffusions are complicated ob-
jects, and the student does not need the extra burden of a subtle process to hin-
der the understanding of large deviations. Discrete time presents another unnec-
essarily difficult process, because the jumps are usually more general than those
of the processes we consider. Furthermore, as we believe the book shows, there
are many interesting applications of jump Markov processes. After all, we live in
continuous time, and the events that occur in digital equipment are discrete.

As mentioned above, our book contains a new exposition of the theory of large
deviations for jump Markov processes, but does not contain any new theory except
for the results of §7.4 and Chapter 8. The applications contain many new results,
though, and new derivations of previously known work. The new results include:

A large deviations analysis of the 1 queue that includes a surprising
asymptotic formula for

0

as gets large, where is the queue size at time (§11.7).

Fully proved large deviations principle for jump Markov processes with a flat
boundary (Chapter 8).

Analysis of a new class of Markov processes, “finite levels,” for which both a
fluid limit theorem and a large deviations principle are proved (Chapter 8).

New analysis of an Aloha multiple-access protocol, using finite levels theory,
gives the quasi-stability region for instant-feedback, continuous time Aloha
(Chapter 14).

New results for Erlang’s model:

Transient analysis from any initial load (§12.5).

Transient analysis of a finite population model (§12.7.A).

Analysis of bulk service (large customers) (§12.7.B).

Transient analysis of trunk reservation (§12.8).

New results for the AMS model:

Analysis of bit-dropping models (§13.7).

Calculation of buffer asymptotics for the multiple class case (§13.8).
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Analyses of a simple priority queue (§15.1), “serve the longest queue” (§ 15.6),
and “join the shortest queue” (§15.10).

Simple analysis of the Flatto-Hahn-Wright queueing system (Chapter 16).

Figure 0.1. Dependence between the chapters.
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0.1. What to Do with this Book

0.2. About the Format of the Book

This book can be used as a basis for two types of one-semester courses. The first is
an introduction to the theory of large deviations, through jump Markov processes.
This course should cover most of Chapters 1, 2, 5, 6, Appendix D, and possibly the
advanced material in Chapter 8. Such a course would prepare the student to read
the more mathematical theory, and to fully appreciate the applications worked out
in the rest of the book. It would be wise (in our opinion) to sprinkle such a theory-
oriented course with some of the applications.

The second course is application-oriented. Such a course should probably start
with Chapter 1 (at least §1.1–1.3), so that some flavor of the theory is provided.
The results of §1.4, 2.1, and 2.3, and of Chapters 5–8 can then be stated without
proof, with or without intuitive explanations. Some basic tools from the calculus
of variations, at least to the extent summarized in Appendix C, should be covered.
Then applications can be presented, according to the dependence chart shown in
Figure 0.1.

Chapter 3 provides an easy application of the basic theory, and can thus be used
to motivate the more general (and more technical) process-level theory. Chapter 4
summarizes some basic results concerning the Poisson process, and more gener-
ally jump Markov processes. There is nothing new in that chapter, but it is a strict
prerequisite for the rest of the book. Finally, in the appendices we collect, for easy
reference, some background material from analysis and probability theory.

In our judgment, the prerequisites for such courses (and for reading the book)
are probability and analysis at a level of first-year graduate courses for engineer-
ing students, or senior-level courses for students of mathematics. The applications
course can be done with much less background, provided the student is willing to
believe the material as summarized in the appendices. However, some mathemat-
ical maturity (even affinity) is required.

There are four types of exercises in the book. Some results that are easy to prove,
important but not central to our development are presented as exercises. In some
cases, extensions are relegated to an exercise when they are deemed not-too-hard
but long; this is simply to save space. Examples and special cases are given as ex-
ercises, and are intended to help build intuition, or clarify a technical point. These
exercises are an integral part of the text, and should at least be read, preferably
solved. The last type of exercises are marked JFF (“just for fun”). The end of an
Exercise is marked thus:

There are two counters in the book: one for equations, one for all theorems,
propositions, lemmas and corollaries, exercises, examples, figures, assumptions,
and definitions. Equation numbers are written as (Chapter-Number.Equation-
Number), and other numbers as Chapter-Number.Number. References appear in
square brackets [ ], and we use either the first two letters of the author’s last name,
or—in the case of multiple authors—all initials. Conflicts are resolved creatively.
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We often wish to make a comment, or expand on a particular topic, in such a way
that the reader may feel free to skip the comment, but will know that it is there.
This is how we do it: in small type, in a narrow paragraph.

The index identifies definitions by bold page numbers, and includes the fre-
quently used symbols.

This project spanned many more years than we had ever anticipated. In the course
of those years we have had help from many, many people. Preeminent among
them are Armand Makowski, Debasis Mitra, and S.R.S. Varadhan. Debasis was
steadfast in his support: moral, financial, and technical. He believed in us when
we weren’t sure we believed in ourselves. This project would never have been
done without him. And we would never have gotten into the field (it is not cer-
tain that there would be much of a field to get into!) without Professor Varadhan.
It was a tremendous comfort to know that there was no technical point, however
difficult or subtle, that could not be answered almost instantly by a simple visit to
NYU. Armand Makowski not only introduced us, and not only is he responsible
for stating that the world would benefit from lecture notes on queueing applica-
tions of large deviations, but he can also be held accountable for doing something
about it. With the support of John Baras, Armand arranged a sabbatical at the Sys-
tems Research Center where a first draft of these notes was hammered out by AW,
and provided a sabbatical at the Systems Research Center where, somewhat un-
expectedly, most of the time of AS was devoted to this project.

There are many more people who have helped over the years. Robert J. Van-
derbei was, for a time, a coauthor of the book, and one appendix still bears his
sole authorship. Several “field tests” of these ideas were graciously hosted by
Armand Makowski at the University of Maryland, College Park, by Elja Arjas
and the Finnish Summer School, and by Sid Browne and the Columbia Business
School and Department of Mathematics. Within Bell Labs and the Technion, our
home institutions, it seems that nearly everyone had something to contribute. No-
table among those were co-large deviants Ofer Zeitouni and Amir Dembo. Also,
Marty Reiman was a constant source of technical wisdom, moral support (what
do you mean you aren’t done yet?), and was an invaluable asset in transportation
and living accommodations. Howard Trickey was our accessible TEX wizard, and
justified his title hands down. Thanks also to Andrew Trevorrow for long-distance
TEX help.

There were many students and colleagues who gave suggestions and feedback
on everything from typos to approach, from early drafts to the first printing of this
book. They include also those attending several courses given at the Technion,
as well as lectures delivered at AT&T. We are particularly grateful for comments
from Laurence Baxter, Henri Casanova, Hong Chen, Bill Cleveland, Ed Coffman,
Amir Dembo, Amanda Galtman, Leo Flatto, Ben Fox, Predrag Jelenkovic, Ariel
Landau, Armand Makowski, Colin Mallows, Bill Massey, Jim Mazo, Debasis
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Mitra, Marty Reiman, Emre Telatar, Stephen R.E. Turner, Yashan Wang, Phil
Whiting, Ward Whitt, Paul Wright, Aaron Wyner, Ofer Zeitouni, and Li Zhang.

The editor-in-chief of this series Laurence Baxter did yeoman’s work. Our edi-
tor John Kimmel amazed us by answering “yes” to every one of our requests, and
promptly, too!

Typists Sue Pope and Lesley Price helped turn scribbled handwriting into beau-
tiful TEX, quickly, accurately, and cheerfully.

This book was produced using TEX, with AS serving as local TEXpert, and was
set in Times Roman, with MathTimes and other math fonts from Y&Y. The figures
were drawn by AW using Canvas c , and according to the egalitarian tendencies
of the authors, was set on Macintosh c , UNIX c , and various PC computers and
clones.

I (AS) am delighted for this opportunity to acknowledge Armand Makowski for
his role as colleague, collaborator, and catalyst in my professional life and, above
all, to express my appreciation for his friendship.

And I (AW) am eternally grateful for my two mentors, Debasis Mitra and Raghu
Varadhan. These two fine men have unselfishly nurtured me throughout this and
other projects. I hope that in some way they can find some recompense in this
volume.

Finally, our families, particularly our wives Shuli Cohen Shwartz and Judy
Weiss, deserve thanks for putting up with us during all these years of labor. While
we’ll never know, it was probably as hard on them as having children; it was cer-
tainly longer and with less reward at the end. We promise we’ll never do it again.

Note: This printing incorporates all the corrections we accumulated during the
first year the book was out. We thank our readers for reporting these mistakes, and
our publisher for allowing us to make the changes. However, from the number of
mistakes found so far, we know that more will be found. Please send comments to
us at apdoo@research.bell-labs.com or adam@ee.technion.ac.il. You can obtain
the latest errata sheet at any of the following locations:

http://cm.bell-labs.com/who/apdoo
http://www-ee.technion.ac.il/~adam
http://users.aol.com/apdoo
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This chapter can be viewed as a guided tour through basic large deviations. Fol-
lowing a heuristic exposition, we derive large deviations estimates for random
variables. We provide proofs when these provide insight, or are typical; other-
wise, we provide references. The modern tools and approaches, especially those
that have proved useful for the applications, are discussed in Chapter 2 and Ap-
pendix D.

The main results, Theorems 1.5, 1.10, and 1.22, as well as the computations of
Examples 1.13–1.18 and Exercises 1.6, 1.17–1.25, will be used heavily through-
out the book.

Estimates of probabilities of rare events turn out to have an exponential form;
i.e., these probabilities decrease exponentially fast as a function of the asymp-
totic parameter. To motivate the exponential form of the large deviations esti-
mates, consider the following examples. Let be a sequence of indepen-
dent, identically distributed (i.i.d.) random variables with a common distribution
function and finite mean. Fix a number . Now the probability that

is clearly decreasing in in a long-term sense, since by the
(weak) law of large numbers

0 as

The next question would be: How fast does this probability decrease? Let us per-
form some quick calculations. First, if for some integer ,

for all 0 1

then clearly . Therefore

for all 0 1

by independence. This immediately implies that the rate of convergence is at most
exponential. On the other hand, for any positive , by Chebycheff’s inequality
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(Theorem A.113),

by independence. For the right choice of , this exponential expression is decreas-
ing:

Show that if 0 and if for all small, then
1 for some . Hint: compute at 0.

Thus, probabilities should decay exponentially in . The questions are: Do the
rates in the upper and lower bound agree, and if so, how do we compute the right
exponent? In §1.2 we show that they are indeed the same, and give a formula.
In §1.3 we compute several examples. Anticipating the shape of things to come,
the arguments indicate that

1 1

where the function depends on the distribution . For the meaning of see
Definition A.14.

Here is another view that some find quite intuitive. If, indeed, ,
then probably (for an illustration see Exercise 1.2 below).
Moreover, it is likely that this happens by nearly-equal splitting, i.e.,

2 and 2, with an error of order . (This
issue, of how improbable things happen, is explained in later chapters.)

Show that in the case of fair coin flips, if is the number of heads
obtained in flips and 0 8 is an integer,

0 8 0 8
1

3
as

and does not grow with ! Hint: .

Compare the chances of obtaining 1 2 heads in coin flips,
with 0 1 2 in the following two ways: (i) by getting two series of 2 flips,
each with 2 heads more than expected. (ii) by obtaining the additional heads in
one series of length 2 with the other series being “normal.” Hint: use Stirling’s
formula.



E

+

α

α1 1

11

4 4

4

/

/

/

/

( ( ))

( )

n
n

n n

n

n

n
n

x x

,

.

( )

/ /

( / )

( )

1

2

1 2 1

2

1

2

1 1

1
1

≥ ≈ ≥ ≥

≈ ≥

≥ ≈ ≥ ;

≥ 6≈ ≥

=

P P

P

P P

P P

E E

E

E E

E

P

E

E E

1 1

1 2

1 2 1

1

1

1 2

1
log log

n

i

n

i

n

n
i

n

i

n

i

n k

i

k

n

i
n

n

(

∑

) (

∑ ∑

)

[ (

∑

)]

(

∑

) [ (

∑

)]

(

∑

)

[ ]

F F

x x

x x x

x x x x x

n
x x

n

x x

n

x x x e

x e e e

= =
= =

· · · · =

· · · · = + +

= + +

+ + → =

· · · ·

= = =

Section 1.1. HEURISTICS AND MOTIVATION

n

x an x a
n

x a
n

x a
n

k n

x an x a
n

k

k n

x an x a

a
k n

o n

( ) ( )

µ α

( ) µ .

( ) ( ( . . . ))

. . .
.

( . )

. . .
α

( )

µ >

These heuristics imply that, for large , we have the rough estimate

2 2

2

Similarly, for any much smaller than ,

If we could choose to be linear in , we would see that this probability decreases
exponentially fast. However, in general,

[for Bernoulli random variables with 1 2, the left-hand side is 1 2 while the
right is 1 2 !]. Thus the integer above cannot quite grow linearly with . This
indicates that indeed (1.1) is to be expected, and that the “error term” cannot
be omitted.

Let us now illustrate some of the ideas from a different angle. To avoid techni-
cal difficulties, assume that the distribution function satisfies 1 0, 2 1.

Let and log . Then

Let us estimate this expectation in a different way. Write

exp log log

exp
log log 1 2

By the strong law of large numbers,

log log
1

so that we expect to grow exponentially, roughly as . However,
by Jensen’s inequality (A.11),

!

Clearly, the law of large numbers is not precise enough to estimate this expec-
tation. Indeed, in this case we cannot expect convergence w.p.1 to imply conver-
gence in expectation, since we are taking expectations of something that may grow
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quickly. Here is a refinement that will consolidate the two calculations. Suppose
that, as in (1.1), we have an exponential estimate for the density of the sample
averages of the sequence log log

log log

for some non-negative function , and suppose that as .
Then

exp
log log

Suppose the maximum sup is attained at some point and write

By the assumptions on , diverges to as , so that it is
strictly negative outside a finite interval. Thus, the integrand in the last integral
goes to zero (exponentially fast) as , except where the maximum is at-
tained, so that

for all 0 and all large. By looking at the points where
we have

for every positive (this idea of estimating the rate of growth of an integral by
considering the maximum of the integrand is called Laplace’s method). We sum-
marize these two inequalities using the notation

exp sup 1 3

where the meaning of is that the left-hand side grows exponentially fast, with
rate sup . We will find in §2.2, as part of the derivation of large de-
viations estimates, that sup log , giving the correct exponential
growth rate.

But this is just a formal calculation, and you are probably asking yourself now,
“How can this be? I know that the mean is , and I’ve seen that the strong law of
large numbers implies that the mean is almost surely near , but how do I recon-
cile the two?” Let’s consider what would happen if you would actually try to run
an experiment to estimate . You would collect samples of the

, and then evaluate the product. You would undoubtedly (law of large numbers)
come up with a number in the range of . Repeat the experiment, and the results
would be similar. However, after a great many experiments, you would come up
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a a

a
a a a

x x
x

they all look like they are sampled from a “tilted distribution,” one
for which x

e e

The last example has more than purely theoretical or pedagogical interest; it has
monetary applications. Consider that investments usually pay an amount propor-
tional to the investment. Suppose that an investment is risky; to be precise, an in-
vestment of one unit at the beginning of the period yields units at the end of
the period [which is the beginning of the 1 period]. Hence, after periods,
the value of a unit investment made at the beginning of the first period is .

How should we value an investment? This is a complicated question, but we
have just seen that the return after a large number of periods is to be
near exp log , not near . Optimal investment strategies are based
on this and related observations. See Kelly [KeJ], Algoet and Cover [AC], and
references therein.

with an unusually large observation—say something near . This observation
is so large relative to the others that it completely dominates the mean you have
been keeping, so that all of a sudden the mean looks like even though only one
observation was of that order. Now what keeps an even more colossal observation
from skewing further the observed mean? The answer is that it is too improbable
for it to happen often [remember grows quickly with ]. It will happen so
rarely, that enough observations have been taken to completely dilute the effect
of the “extra large” observation. This is the tradeoff we see between (“the
probability”) and (“the size”), and is the reason that sup is the im-
portant quantity. It also serves to demonstrate that, sometimes, rare events are the
most important to determine what’s going on.

Sanov’s Theorem, introduced in §2.4, takes us one step up to “Level 2 Large De-
viations.” The question we ask there is: What do the random variables
look like when they do make a big excursion (such as making )? It
turns out that

log log . In other words, the product becomes large because of
conspiracies, because of outliers. This conspiracy is a very rare occurrence,
but when it occurs, its effect is huge. This is captured by the balance between the
size of the effect , and the rarity . Whereas in §1.1 we ask “How likely
is it for the sample mean to deviate from the ensemble mean?,” Sanov’s Theorem
addresses the question “How likely is it for the empirical distribution to deviate
from the true distribution?” But let us establish first things first.
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Chernoff’s Theorem establishes (1.1) for i.i.d. random variables. The proof con-
sists of an upper bound and a lower bound. The upper bound is just a parame-
terized version of Chebycheff’s inequality (A.9) applied to the function . The
lower bound uses a change of measure argument much as in importance sampling.
These ideas generalize to random vectors and to processes, and will be used in all
our large deviations proofs.

So, consider a sequence of i.i.d. random variables with common dis-
tribution function , and assume the mean exists. Define

1 4

log inf sup log 1 4

is the of the random variable . The function
log is called the or

of . Note that is non-negative [put 0 in (1.4 b)] and
convex (by Theorem A.47, being the supremum of linear, hence convex func-
tions); see Proposition 5.10, §5.2. The transformation applied to log in (1.4b)
is variously called the convex transform, Fenchel transform, Legendre transform,
or Cramér transform.

Figure 1.4. The -function: computing the Legendre transform.

By Exercise A.92, if the supremum in (1.4) is attained at a point in the interior
of the interval where is finite, then is differentiable at , so that

log 1 5

1 6
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Assume that for in some neighborhood of and that (1.5) holds for
some in the interior of that neighborhood. Then for every there exists
an integer such that whenever ,

Equations (1.6a)–(1.6b) imply that

0
0

1 6

1 6

This result holds, in fact, for i.i.d. random variables without any as-
sumptions. The general case is proved using an approximation argument; see,
e.g., Chernoff [Ch], Dembo and Zeitouni [DZ §2.2] and Theorem 1.10 below.

. By virtue of Exercise 1.6 below, it suffices to establish the result when
0. The upper bound is proved using an exponential estimate. First fix

0.

is increasing

Chebycheff

independence.

Equality in the first relation holds whenever 0. Since 0 was arbitrary,
taking the infimum would yield (1.6a) provided we show that we can ignore neg-
ative values of in (1.4b).

By Jensen’s inequality,

1

for all . Thus, since 0,

1 for 0

with equality for 0. Therefore in computing the middle term of (1.4), we can
restrict the range of the infimum to 0, i.e.,

inf inf

This completes the proof of the upper bound (1.6a).

The lower bound is established using a change of measure (if you are unfamiliar
with the idea of a change of measure, see §A.4). Let be the distribution of .
Then , defined by

1 7
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is a new distribution function (check!) ( is the tilted distribution referred to at
the end of §1.1). For any real , we clearly have

[ ]

[ ]

[ ]

by the definition of . Applying this idea to the left-hand side of (1.6b),

[ ]

[ ]

Changing to the measure , we have, for any 0,

1 8

[ ]

[ ]

[ ]

Let be i.i.d. random variables, distributed according to . Then the
probability in the first expression of (1.8a) is bounded below by

1 8

We now provide a lower bound for the probability on the right of (1.8b). First,
since is finite in a neighborhood of , it is differentiable there by Exer-
cise A.92. Therefore

1 2

and, in particular,
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Exercise 1.6.

Exercise 1.7.

Exercise 1.8.
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Since inf and it is differentiable, the derivative vanishes
at , so that

0 or

This implies that the change of measure puts the mean of exactly at since

Consider the sum in (1.8b) of the i.i.d. random variables . Since these
random variables have mean and finite variance, the central limit theorem A.112
implies

1
0

1

2
as

Let be such that the probability exceeds 1 4 whenever (clearly de-
pends on ). Then for ,

1

4
1

4

Now since 0 (why?) we can choose so that 1 4 when-
ever . This proves (1.6b–1.6c).

Let for each 1, where is a fixed constant. Express
the moment generating function and the Cramér transform of its logarithm
in terms of and . Write Theorem 1.5 for and conclude that the
zero-mean assumption on is without loss of generality.

Assume is continuous, and re-derive the lower bound without
invoking the central limit theorem. Hint: use the law of large numbers.

Let be independent (but not necessarily identically dis-
tributed!) random variables so that for all and , for
some 0. Then there exists a continuous function , which depends only
on , so that for all 0 we have 0 and
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Assume for in some neighborhood of zero. Then,
for every open set and positive integer ,

ε

( ε)

θ

(ε, θ)

(ε, θ) ( , )

ε, θ ε θ

( ε ) > ε

( ) < ( )

` , , . . . `

, , . . . <

( ) .

>

( ) `( ).

(θ) < θ

.

( α) ` θ `( )

` `( )

( ) `

> <

`( ) ( )

( , , )

Hint: compute separately for the case that the sum is larger than and smaller
than , and start with the zero-mean case. Use Chebycheff’s inequality as
in the proof of Theorem 1.5. Prove is finite for all small, uniformly in

. Use Exercise A.92 to conclude that the functions have
continuous derivatives (of all orders!) near 0 0 . Now use a Taylor
expansion in the two variables to second order and set . Obtain a bound
of the form 1 with 0 that holds for small .

To compute for , note from (1.4)
that the -function for the sequence is equal to the -function of

with the sign of its argument reversed, so that, for 0, by Chernoff’s
Theorem,

A more detailed statement of a large deviations theorem in and under weaker
conditions is given in Theorem 1.10 below.

Theorem 1.5 gives us an estimate of the probability that the sample mean lies
in the half-line above , and the remark extends this to the half-line below

. This easily extends to more general sets. Define the real-valued function
on sets in by

inf

Note that such a result is not possible for closed sets: in particular, single points
are closed sets, and if possesses a density, then the probability that the sample
mean is in the set is zero.

For a proof of this corollary see Dembo and Zeitouni [DZ]. Here is a heuristic
argument (when 0). An application of Jensen’s inequality (to the convex
function log : use the definition of with fixed) shows that 0 0, and
since is non-negative, 0 0. Thus the result is just the weak law of large
numbers if 0 . Now is non-negative and convex, so that it is in-
creasing for 0 and decreasing for 0. But then there is a point, say , in
the closure of so that . Since is open, there is an interval in
whose endpoint is . The argument of the lower bound now applies, since (1.8)
uses only a small interval, so that the same lower bound holds for all open sets for
which is a minimum point. For the upper bound, enclose by the two smallest
semi-infinite intervals ] and [ and apply Theorem 1.5.

Actually, this discussion is generic in that lower bounds are usually proved lo-
cally, while upper bounds are established by increasing the sets.
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1.3. Examples—I.I.D. Random Variables
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Theorem 1.10.

Example 1.11: Normal random variables.

+ · · · + ∈ ≤ −

+ · · · + ∈ ≥ −

= √ =

= − =

+ · · · + ≥ ≈
+ · · · +√

+ · · · + ≥ = ≥ √

= √

+ ≤ ≤

+ · · · + ≥ ≈ √

x x
F

n

x x

n
F a

G

n

x x

n
G a

x x

M e e dy e

a a a
a

x x na e

x x
nx

x x na x na

e dt

y y
e e dt

y
e

x x na
na

e

Let be i.i.d. random variables. Then the function de-
fined in (1.4) is convex and lower semicontinuous. For any closed set ,

and for any open set ,

The one-dimensional case is unique in that the upper bound holds for open sets.
The typical large deviations statement consists of an upper bound for closed sets
and a lower bound for open sets. Here is the best result for i.i.d. random variables,
stated in generic large deviations form. For a proof, see [DZ §2.2].

lim sup
1

log inf

lim inf
1

log inf

Note that no conditions, not even existence of the mean, are required.

In some cases, notably exponential families, the function of (1.4b) can be cal-
culated explicitly (see, e.g., [MN]). We now present some simple calculations in
order to develop a feeling for the scope of the large deviations estimates.

Let be standard normal
random variables. Then

1

2

by completing the square in the exponent, so that sup .
Thus Chernoff’s Theorem states that, for any 0,

In this case, we can also perform a direct calculation: is a normal
random variable distributed as , so

1

2

Using an estimate of this integral [Mc, p. 5],

1 1

we obtain
1

2
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Example 1.13: Poisson random variables.
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which is in agreement with the exponential order of the large deviations estimates.
The fact that 1 appears is also generic, as will be seen in the sequel.

Figure 1.12. The rate function for Standard Normal random variables.

Let be Poisson with mean . Then
, and for 0, log . Thus

log 1

and 0 , for 0, with in the last two cases. Thus
Chernoff’s Theorem implies, for ,

Let us compare this with a direct estimate. Since is a Poisson random
variable with mean ,

! !

2
1

2

using Stirling’s formula, and the factor 1 appears again.
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Example 1.15: Bernoulli random variables.
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Figure 1.14. The rate function for Standard Poisson random variables.

Let take values zero and one
with probability 1 2. Then 1 . When 1, straightfor-
ward calculus shows that log log 1 , so that in this range

log log 1 log 1 log 2 1 9

Chernoff’s Theorem thus implies that, for 1 2 1,

2 1

We can obtain an estimate in a direct way, by approximating the binomial coeffi-
cient using Stirling’s formula:

2
!

! !
2

2 2

2 2 1 1

2 1 2 1

The formula for immediately implies that whenever 0 or 1,
and 0 1 log 2, with in all these cases. Chernoff’s Theorem
tells us that 0 whenever 1. For, 1

the theorem implies , which is quite close to

the exact probability .
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Exercise 1.17.

Example 1.18: Exponential random variables.

Exercise 1.20.

Figure 1.16. The rate function for Bernoulli-1 2 random variables.

For Bernoulli random variables with 1 ,

log 1 log
1

1

Let be exponential random
variables with mean 1. Then 1 1 for 1 and is infinite otherwise.
Therefore 1 whenever 1 and then

1 log

Chernoff’s Theorem states that for 1,

Figure 1.19. The rate function for Exponential random variables, rate one.

For exponential random variables with parameter (mean 1 ),
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1.4. I.I.D. Random Vectors

Exercise 1.21.

Theorem 1.22.
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Assume for all . Then, for every closed set and
, there exists an integer such that, whenever ,

and for every open set and , there exists an integer such that, whenever
,

Interpret this as a time change.

From the examples, the following should be expected.

Let be the constant that is the greatest lower bound for a random
variable ; that is, 0 and 0 for all 0. Then

for . Moreover, if and only if 0. Hint:
take 0, use dominated convergence, then extend by Exercise 1.6.

Large deviations in are much more complex than in . The main reason for
this is that open and closed sets are more complex. Fortunately, these results are
not needed in the development of our theory. Sticking to our principle of proving
just what we need, let us state a reasonable large deviations result, and provide
rough intuition about a way a proof might go. A modern approach to this problem
is discussed in §2.1.

Consider the -valued i.i.d. random vectors with (vector) mean 0.
Now let and define (see Example A.8 for the notation)

1 10

log inf sup log 1 10

Define as in Corollary 1.9, but for sets in . That is,

inf 1 11

0

1 12

0

1 12

The proof of this theorem in is much more involved than in . Further-
more, the “weakest assumptions” possible in are much more restrictive than
in . See, for example, §D.1, [DZ] and the remarks in §1.5 below. Although
modern proofs rely on the technique of §D.1, we outline the extension of the one-
dimensional arguments to .
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Exercise 1.24.

Exercise 1.25.
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The lower bound in was based on estimating the probability of the sample
mean being in a small interval around the point where is smallest. A similar
argument works in the -dimensional case: we need to consider small neighbor-
hoods, or balls, around the minimizing point.

Generalize Exercise 1.7 to .

For the upper bound, consider half-spaces of the form :

for some and 0. Then are i.i.d. and

Assume is continuous and finite. Prove the upper bound for con-
vex sets in . Extend the proof to finite unions of convex sets. Hint: use Cher-
noff’s Theorem for . Note that is convex as explained below (1.4) so

that : is convex, and has empty intersection with .
Therefore there is a half-space containing that does not intersect .

The following calculation will be used for our Poisson processes. It follows
from (1.10)–(1.12).

Suppose are i.i.d. with . Define

Show that defined in (1.10b) has the form

sup 1 13

where log is given by

1 1 14

Consequently, Exercise 1.24 implies that

lim lim
1

log
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One-dimensional caveats

require

contraction principle

While the one-dimensional case is simple enough to make the ideas clear, it can
(for the same reason) lull the reader into unwarranted carelessness. We conclude
this chapter by identifying some potential pitfalls, and then discussing related
works and possible extensions.

The reader should be aware of several delicate points. Some of these are discussed
in Chapter 2 and Appendix D.

1. Properties of the rate function.

a. Convexity. The calculations in Chapter 1 show that rate functions for random
vectors are convex. This (unfortunately) does not extend to rate functions for
processes, as will be seen in Chapter 5.

b. Semicontinuity. The calculations in Chapter 1 show that rate functions are
lower semicontinuous. Recall that this means that lim inf
so that can only jump down. When we formulate, in §2.1, the “axiomatic”
large deviations principle, we shall that rate functions be lower semi-
continuous. There are several reasons for this restriction. Under this con-
dition there is a convenient, equivalent formulation of the upper bound (see
Lemma 2.11), and it guarantees uniqueness of the rate function (§2.1). This
condition also makes the upper bound for closed sets particularly easy to
prove. In addition, it implies that if a rate function is strictly positive at every
point of a compact set, then the probability of that set decays exponentially
fast (lower semicontinuous functions attain their minimum on compact sets).

c. Compact level sets. The examples in Chapter 1 show that possesses com-
pact level sets, i.e., the sets

:

are closed and bounded for each , if and only if the probability that the ran-
dom variable actually takes its smallest possible value is zero: Exercise 1.21.
In particular, these sets are closed, which implies lower semicontinuity—see
Definition A.28 and Exercise A.29. The compactness condition is necessary
in order to establish the important (§2.3). This is illus-
trated further in §2.3. In Chapter 7 we provide an example of a non-negative
birth-death process with constant drift ( 1) for 0, but with the cost (in
terms of the rate function) of going from 0 to being finite. It is easy to
show that the process will explode (transition to infinity) if allowed to run
for a long enough (finite) time.

2. Difficulties in higher dimensions. In one dimension, the use of Chernoff’s The-
orem for semi-infinite sets actually provides enough control to estimate the
probability that
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Extensions and relations to other methodologies.

is in a fairly arbitrary set. In higher dimensions, it is more complicated to es-
timate this probability, because the topology is more complicated. Thus we
need stronger assumptions in when 2.

3. Difficulties of processes, as opposed to finite dimension. Processes can be
viewed, if you are so inclined, as random variables with values in some (in-
finite dimensional) space of functions. The topology that troubled us in is
simple compared to the topology in function spaces. In this book we restrict
our attention to particularly simple processes: jump Markov processes, where
the topology is well understood. This topology is discussed in §A.1.

Extensions and generalizations of the results of Chapter 1 are discussed in Chapter
2 and Appendix D. Let us now mention briefly some extensions that will not be
touched upon.

The only type of large deviations estimate we obtain in this book is on the order
of

This is only the first term in an asymptotic expansion, though. Using formal meth-
ods such as WKB expansions, one finds [Ol] that the series usually continues as
follows:

1

where is the number of dimensions of the process in question. There are a few
cases where the full asymptotic expansion has been worked out, and there are
many more cases where some terms have been calculated.

a. Formal expansions of singular equations (e.g., WKB methods). Several inves-
tigators, notably Knessl, Matkowski, Morrison, Schuss, and Tier [KMS, Mo1,
Mo2] have calculated quite accurate and explicit asymptotic expressions for
various large deviations problems using formal expansions. The main criti-
cism of these techniques (there are several that are employed) is that there is no
proof of their validity; in contrast, the student will note that in the present book,
about 50% of the pages are devoted to proving the validity of the methods we
employ. Martin Day provides rigorous proofs for the validity, in some cases, of
formulae obtained by formal methods of the WKB type; see e.g., [D2]. Formal
methods often give more terms in the asymptotic series than the “rough” meth-
ods we employ. They do not usually give sample path information, though,
such as we obtain in Chapter 16.

b. Central limit expansions and moderate deviations. The quantities we estimate
are generalizations of
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compared to the central limit quantity

Clearly there is room to investigate the quantities

for 0 1 2. Some of these questions have been approached by Ibragimov
and Linnik [IL] and there has been a good deal of activity since then, for both
random variables and processes. See, e.g., [DZ, § 3.7].

c. Spectral methods. Many of the applications we analyze may also be examined
using spectral methods. For example, the AMS model (Chapter 13) has been
investigated by A. Elwalid, D. Mitra, and T. Stern [EMS] among others. Some
of the calculations we do are provably equivalent to calculations done on the
spectrum; see, e.g., [C1].

d. Calculus of variations methods, optimal control. You can view our approach
to probability problems as a method for turning them into problems in the cal-
culus of variations; hence, anything you know about such problems is related
to our methods. The type of variational problems arising here also appear in
optimal control: of course optimal control and variational problems are them-
selves inextricably linked, e.g. [Yo, Ce]. In addition, there are several prob-
lems in recursive estimation theory, cf. [DK1, DK2], that can be solved via
large deviations techniques.

e. Viscosity solutions. Variational problems can often be solved in terms of PDEs
(partial differential equations). One of the technical problems that arises is
smoothness of solutions. The so-called viscosity solutions turn out to be the
correct object (in terms of the degree of smoothness) for many variational
problems. Using this concept one can sometimes prove that formal calcula-
tions are correct, at least to first order. Barles, Evans, and Souganidis [BES]
and Dupuis, Ishii, and Soner [DIS] have used viscosity techniques to prove
large deviations principles for certain classes of systems. Reference [DIS] is
notable because it proves the principle for the very important case of Jackson
networks. In addition, viscosity solutions naturally lead to methods of solv-
ing PDEs (and hence variational problems) via successive approximations—a
procedure that can facilitate the numerical solution of some large deviations
problems.

f. Entropy. Entropy and large deviations are intimately related. We have deliber-
ately avoided this relationship, but others have exploited it to good effect. Ellis
[Ell] goes into great detail, proving results on the Ising model among others.
All of information theory is based on Chernoff-type estimates; see, for exam-
ple, Bucklew’s book [Bu]. Donsker and Varadhan [DV3] showed how opti-
mal change of measure can be calculated via entropy in a very general Markov
process setting. Kullback-Leibler information can be viewed as a large devi-
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ations quantity. Again, the reasons we avoid this fruitful subject are lack of
time, space, and our choice of applications.

g. Importance sampling. Importance sampling is, in essence, the use of change
of measure to improve the accuracy of statistical estimates. It is increasingly
important in the simulation of rare events. Our approach to the large deviations
lower bound is equivalent to choosing an optimal importance sampling scheme
among a class of changed measures. For more details, see [CFM, Bu].

h. Feynman path integrals. The Feynman-Kac formula can be viewed as showing
that the exponential martingale we use is indeed a martingale. In other words,
our method for proving upper bounds is based on the reasoning behind Feyn-
man path integrals. For a more direct (but, so far as we know, unproven) con-
nection, see Gunther [Gu]. See also Brydges and Maya [BrM].

i. Steepest descent methods. The first large deviations calculations were made by
steepest descent methods. It is a natural method, since the transforms (Laplace
or Fourier) of sums of independent random variables are simply powers, and
steepest descent is then quite accurate for computing the inverse transform.


